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Both appetitive and aversive primary reinforcers—pleasure and 
pain—fundamentally shape learning and decision-making. Neural 
processes that signal appetitive value, including responses in the  
mesolimbic dopamine system, drive reward-pursuit responses. Pain 
and other aversive processes drive avoidance and escape. In spite of 
its importance, however, pain avoidance is poorly understood, and 
the nature of the cerebral processes underlying pain’s motivational 
functions is an important frontier1,2.

Much progress in understanding motivational learning systems has 
come from the application of computational models of reinforcement 
learning to the analysis of animal brain circuitry3 and human fMRI 
data4. Such models posit that learning occurs in proportion to the 
magnitude of the prediction error (PE)—the discrepancy between the 
predicted value and experienced reward or punishment—evaluated 
after each action5. Reinforcement learning models have been used  
to identify reward PE signals—which reflect ‘better-than-expected’ 
outcomes—in midbrain dopamine neurons3, ventral striatum (VS) 
and medial orbitofrontal cortex (OFC). While fMRI activity in these 
and other areas correlates with parametric estimates of PEs, work 
examining such activity more carefully with respect to separate 
algebraic components of the PE6–8—or, in a related approach, test-
ing activity against a set of axioms that together comprise the set of 
conditions that define a PE9—has so far validated only VS activity as 
satisfying all the criteria for appetitive PEs in humans.

Meanwhile, there has not yet been a similarly systematic decomposi-
tion of aversive PE-related activity. An emerging body of literature2,10–13 
has identified several candidate regions that may encode aversive PE 
signals (worse-than-expected outcomes) in humans, including the amy-
gdala12,14, VS2,15,16 and lateral OFC10,17. However, it remains unclear 
whether this activity reflects PEs or, rather, related signals such as pain 
expectancies or aversive responses. In addition, recent animal studies 

have identified neurons in a different region, the midbrain periaque-
ductal gray (PAG), with several aversive PE–like properties1, including 
elevated firing rates to unexpected versus expected punishment1,18 and 
habituation as painful shocks become expected1,18.

In this study, using a combination of computational modeling and 
axiomatic approaches with fMRI data, we sought to identify regions 
encoding aversive PE signals (worse-than-expected outcomes) and 
aversive value signals (pain expectancies). Participants (N = 26) per-
formed a reinforcement-learning task during which they learned 
to avoid selecting the actions associated with a high probability of 
receiving pain. On each of 150 trials, participants chose between  
two options (Fig. 1a), each associated probabilistically with the  
delivery of painful heat (47.4 ± 1.71 °C). Probabilities for each option  
were governed by two independently varying random walks, so that 
participants learned to track the changing reinforcement values  
continuously throughout the task (Fig. 1b).

Our first objective was to identify brain regions that encode aversive 
PE signals and aversive value signals (pain expectancies), particularly 
in regions commonly thought to mediate PEs from human studies, 
including VS, and animal models (PAG). We reasoned that using  
an axiomatic testing approach could provide a stronger test for  
identifying aversive PEs and aversive value signals. We therefore  
considered whether (i) signals in PAG and VS correlate with PEs 
as predicted by a computational reinforcement learning model and 
(ii) they satisfy the three axiomatic properties that together define 
aversive PEs (ref. 9; see Results and Online Methods for a detailed 
description of the axioms).

Second, we sought to develop a brain-based model of how PE- and 
value-encoding regions interact during learning. The computational 
framework for reinforcement learning specifies dynamic interactions 
between brain regions encoding reinforcements, expected values and 
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Pain is a primary driver of learning and motivated action. It is also a target of learning, as nociceptive brain responses are 
shaped by learning processes. We combined an instrumental pain avoidance task with an axiomatic approach to assessing fMRI 
signals related to prediction errors (PEs), which drive reinforcement-based learning. We found that pain PEs were encoded in 
the periaqueductal gray (PAG), a structure important for pain control and learning in animal models. Axiomatic tests combined 
with dynamic causal modeling suggested that ventromedial prefrontal cortex, supported by putamen, provides an expected 
value–related input to the PAG, which then conveys PE signals to prefrontal regions important for behavioral regulation, including 
orbitofrontal, anterior mid-cingulate and dorsomedial prefrontal cortices. Thus, pain-related learning involves distinct neural 
circuitry, with implications for behavior and pain dynamics.
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PEs, but previous fMRI studies have not investigated the inter-region 
dynamics (that is, effective connectivity) implied by reinforcement 
learning models. In a strong form of the mapping between model 
and brain, PE-based value updating may be accomplished by direct 
connectivity between PE- and value-encoding regions. Here, we used 
dynamic causal modeling (DCM)19 to test plausible models of effec-
tive connectivity among value-encoding and PE-encoding regions, 
with the goal of developing an empirically based model of how brain 
regions interact during pain-driven learning.

RESULTS
Behavioral results
As expected, participants switched options more frequently after 
receiving pain than no stimulus (40.5 ± 4.2% versus 6 ± 1.1% of trials,  
P < 0.0001). The effects of pain on switching also decayed exponentially 
with time, as evidenced by the results of logistic regressions assessing 
the effects of reinforcement history (pain delivered 1 to 6 trials back) 
on switches (P < 0.001 for one and two trials back; Fig. 1c).

We then used a standard temporal difference computational learn-
ing model to analyze subjects’ choices as a function of pain. The model 
comprised a learning rate parameter (α), controlling the extent to 
which past feedback influences future predictions, and a softmax 
inverse temperature (β) parameter controlling the probability of 
selecting the most advantageous option. The analysis revealed learning 
rates (α = 0.63 ± 0.26), softmax inverse temperatures (β = 4.74 ± 2.74)  
and model fits (negative log likelihood = 65 ± 21) comparable to those 
found in similar studies of reinforcement learning20. These results, 
along with the exponential form of the influences of previous pain 
(Fig. 1c), suggest that the temporal difference model captures pain 
avoidance learning in this task.

Aversive prediction error signals
Aversive PE signals should be phasically triggered at the moment 
when participants learn that punishment will be delivered and should 
correlate with computational model–derived PEs. Here we identified 
PE-correlated regions by regressing fMRI activity at outcome onset 
(see Supplementary Fig. 1) on model-derived PEs determined by 
fitting a temporal difference model to the individual’s choice behavior 
(see Online Methods). Activity correlating with model-based aversive 
PEs (greater activity for worse-than-expected outcomes) was found in 
several areas (Fig. 1d). These included the left anterior insula, anterior 
and mid-cingulate cortices (ACC and MCC, respectively), the right 
pre- and post-central gyri, the right dorsolateral prefrontal cortex 
and a large cluster in the midbrain encompassing the periaqueductal 

gray (PAG). Negative correlations with PE (greater activity for better- 
than-expected outcomes) were found in the entorhinal and parahip-
pocampal cortices, right inferior frontal gyrus, right temporal pole 
and right lateral thalamus (Fig. 1d and Supplementary Table 1).

In the reward domain, it has been shown that some signals that cor-
relate with PE are better explained as relating to some other quantity, 
such as reward magnitude, that is intrinsically correlated with PE6,8,9,14. 
Here, activity that tracked aversive PEs was similar to activity related 
to pain onset versus no-stimulus onset (see Supplementary Fig. 2 and 
Supplementary Table 1; note that both pain and no-stimulus trials 
were indicated by an identical change in the fixation cross to avoid 
temporal ambiguity). Thus, to ensure that the candidate PE-related 
fMRI signals truly integrate outcome and expectancy information into 
an aversive PE signal, we used an axiomatic approach9 (see Online 
Methods), which specifies a set of three conditions that together define 
a PE. In the context of our task, these were as follows. Axiom 1: activity 
should be higher for received than avoided pain, unless pain is fully 
expected. Axiom 2: activity should decrease in proportion to expected 
pain (that is, expected aversive value), for both pain and no-stimu-
lus trials. Axiom 3: activity on pain and no-stimulus trials should be 
equivalent if the outcome is completely predicted.

Here the first two conditions correspond to tests of effects of  
outcome and expectancy, respectively, the conjunction of which  
constitutes the algebraic definition of PEs (rt − Vt). These tests  
are analogous to those in other recent work6,8,14, while the third  
condition, less often explicitly examined, verifies that the magnitudes 
of these two separate and opposite effects are equivalent, so that fully 
predicted outcomes do not generate PE signals. Thus, the axioms  
as applied in our case reflect the requirements specified by the  
mathematical definition of an aversive PE.

Brain regions that satisfy all the axioms should show a distinc-
tive profile of activity as a function of expectancy and pain delivery, 
whereas those that track only pain expectancy or delivery will show 
different patterns (Fig. 2a). Because axiom 3 depends on support for 
the null hypothesis, we conducted additional Bayesian analyses of the 
odds in favor of versus against the null hypothesis21.

Region of interest (ROI) analyses revealed that PAG, but not VS, 
fulfilled all the axioms for aversive PE signals (Fig. 2b). The PAG 
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Figure 1 Pain avoidance learning task, behavioral and brain imaging 
results. (a) One experimental trial. Participants had 1.8 s to make  
their choice, after which their choice was displayed for 0.2 s. After  
an anticipation period of 4 s, participants either received a painful  
stimulus or nothing. The stimulation period was marked by a different 
fixation point. Trials were separated by a 6.6–11.4 s intertrial interval 
(ITI). (b) Data from one participant. The blue and green lines depict the 
probability of pain associated with each option over the 150 trials (one of 
four possible pairs of random walks). Blue and green dots represent the 
selected option and black triangles represent pain delivery. (c) Logistic 
regression model results (number of participants = 23). Probability  
of switching (mean log odds ± s.e.m.) as a function of pain one to six trials 
back decays exponentially and is significantly different from zero at one 
(t(22) = 9.20, P < 0.001) and two (t(22) = 4.36, P < 0.001) trials back. 
(d) Activity correlated with reinforcement learning model–based prediction 
errors at pain onsets (number of participants = 23), cluster-thresholded  
(P < 0.05, corrected for family-wise error rate (FWER), two-tailed) with 
cluster-defining thresholds of P < 0.001, P < 0.01 and P < 0.05.
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responded more strongly to pain trials than no-stimulus trials, 
holding pain expectancy constant (axiom 1; t(22) = 3.67, P < 0.05).  
It showed reduced responses to outcomes with greater pain expect-
ancy, for both pain and no-stimulus trials (axiom 2; pain trials:  
t(22) = −2.05, P < 0.05; no-stimulus trials: t(22) = −1.98, P < 0.05). 
And finally, it showed no difference between fully predicted pain and 
no-stimulus trials (axiom 3; t(22) = 0.13, P = 0.90, odds in favor of the 
null hypothesis = 5.48). The VS did not show any effect of pain expect-
ancy (pain trials, P = 0.87; no-stimulus trials, P = 0.40), violating  
axiom 2, and did not respond to pain versus no-stimulus outcomes 
(P = 0.62), violating axiom 1.

To search for additional regions that might satisfy the axioms for 
aversive PEs, we conducted a whole-brain conjunction search for 
three relevant contrasts: (i) pain onset versus no-stimulus onset; (ii) 
expectancy effects—that is, parametric variation with the degree of 
model-based expectancy—on pain trials; and (iii) expectancy effects 
on no-stimulus trials (Fig. 3). Significant results in effect i satisfy axiom 
1 and significant results for effects ii and iii satisfy axiom 2. A region of 

the PAG extending into the tectum (Fig. 3 and Supplementary Table 2)  
was the only region to show significant results in all three tests (P < 0.05, 
cluster-extent corrected). To test axiom 3, we compared activity within 
that cluster for highly expected pain and no-stimulus outcomes. There 
was no activity difference between pain and no-stimulus trials when 
outcomes were highly predicted (t(22): 0.56, P > 0.4, odds in favor of 
the null hypothesis = 5.13), thereby confirming axiom 3.

Studies 2 and 3: monetary rewards and varying pain levels
In this study, we chose not to include rewarding events, in part because 
many studies have demonstrated reward-related PEs linked to VS9,22 
and in part to avoid the complexity caused when participants directly 
compare rewarding and punishing events. However, to provide addi-
tional evidence on whether aversive and appetitive PEs are encoded in 
different brain circuits, we reanalyzed data from a published experi-
ment23 that used a similar experimental design with monetary rewards 
(Supplementary Fig. 3), focusing on the VS and PAG. As expected, 
in contradistinction to the main study results, appetitive PEs to mon-

etary rewards were tracked by activity in the 
VS (t(20) = 5.77, P < 0.001), but not the PAG 
(PAG–appetitive: t(20) = 1.54, P = 0.14; see 
Supplementary Fig. 3). The signal-to-noise 
(SNR) ratios in the VS (171.13 ± 9.68) and 
PAG (163.20 ± 5.57) were not significantly 
different (P > 0.23). However, we note that 
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the dissociation between aversive and reward PEs depends on null 
findings in the PAG in study 2 and other reward learning studies. It is 
possible that high-resolution and brainstem-optimized imaging (for 
example, refs. 24,25) could yield additional reward-related signals that 
remain to be discovered. Moreover, differences in field strength (3 T 
versus 1.5 T) and other scanning parameters could also have impacted 
the ability to identify appetitive PE signals in the PAG in study 2.

Another important issue is whether putative PE-related signals are 
related to pain intensity or merely the presence versus absence of an 
aversive reinforcer. In study 3 (n = 50; Supplementary Fig. 4), we 
sought to replicate aversive PE–related findings in the PAG and test for 
activation related to noxious stimulus intensity. This study used three 
intensities of painful stimulation in the noxious range (46 °C, 47 °C 
and 48 °C) and two independent manipulations of expectations about 
pain intensity: (i) a classical conditioning procedure and (ii) unrein-
forced placebo instructions designed to induce expectations of relief 
(see Supplementary Fig. 4). Activity corresponding to the axiomatic 
requirements for prediction errors was analyzed in the time window 
during which the three stimulus intensities were subjectively differen-
tiated (4–10 s after stimulus onset; see Supplementary Fig. 4d).

In accordance with axiom 1, PAG activity within that time window 
increased with temperature (P < 0.001). In accordance with axiom 2, 
activity was higher during pain for low versus high pain conditioned 
cues (F(1,49) = 4.39, P < 0.05) and for the placebo versus control 
condition (F(1,49) = 16.03, P < 0.001). In both of these conditions, 
the stimulus was higher than expected on the basis of cues and verbal 
instructions, respectively. Finally, it was not possible to definitively 
test axiom 3 in study 3 because cues never fully predicted outcomes. 
Overall, results from this supplementary experiment replicated and 
extended the findings of pain-related aversive prediction errors in the 
PAG, demonstrating sensitivity to the level of painful stimulus inten-
sity and sensitivity to verbal instructions as well as predictive cues.

Expectancies and other learning-related variables
Regions that track expected avoidance value—a contributor to aversive 
PEs—should show effects of the expected probability of pain but no 
effects of pain itself (Fig. 2a). In terms of neural effects, this translates into 
greater activity with low pain expectancy for both pain and no-stimulus 
trials, but no difference in activity between pain and no-stimulus trials. 
We identified clusters in the left putamen, ventromedial prefrontal cortex 
(vmPFC) and right hippocampus in which activity fit this profile, con-
sistent with expectancy effects. These regions displayed increased activ-
ity when pain was expected to be avoided (low pain expectancy) but did 
not respond differentially to pain versus no-stimulus outcomes (Fig. 3a).  
Post hoc analyses confirmed that no areas showed significant pain versus 
no-stimulus effects (left putamen: P = 0.43, Bayes factor in favor of the 
null hypothesis = 7.13; vmPFC: P = 0.93, Bayes factor in favor of the null 
hypothesis = 10.03; right hippocampus: P = 0.81, Bayes factor in favor 
of the null hypothesis = 9.44).

The conjunction analyses we conducted can identify regions that 
do not conform precisely to all elements of the reinforcement learning 
model but may nonetheless be important for guiding behavior and learn-
ing. Several regions identified in the conjunction analysis correlated with 
PEs only on pain trials (Fig. 3a), including the left OFC, anterior MCC 

(aMCC), dorsomedial prefrontal cortex (dmPFC) and a larger dorsal  
midbrain cluster comprising the PAG, tectum, nucleus cuneiformis 
(NCF), dorsal raphe nucleus (DRN) and red nucleus. Though there 
are several potential interpretations, we suggest that these areas reflect 
updating of the value of switching away from the punished option on the 
next trial, a decision participants only have to make after pain delivery.

Finally, follow-up ROI analyses of response patterns within these 
regions revealed that the midbrain showed a significant correlation 
with expected value on no-stimulus trials (t(22) = −1.82, P = 0.05, one-
tailed) that did not meet the whole-brain threshold (Fig. 3b). Thus, 
findings in this larger midbrain cluster are consistent with aversive PE 
signals, though the dorsal PAG region was the only portion to survive 
whole-brain correction in all three contrasts. The other three regions 
showed little evidence for expectancy effects on no-stimulus trials 
(Bayes factors in favor of the null hypothesis: aMCC, 2.50; OFC, 4.07; 
dmPFC, 2.26) and thus are more likely to reflect avoidance value updat-
ing or other motivational processes. Finally, we note that although the 
current results relate signal in the PAG as a whole to aversive PEs, it is 
possible that high-resolution and brainstem-optimized imaging could 
reveal a finer-grained distribution of PAG subregions with functionally 
distinct response profiles24,26, including portions that respond only to 
expectancies. More broadly, our results do not imply that aversive PEs 
are the only signal represented in the PAG.

The previous analyses examined fMRI activity at pain onset, when 
PEs are generated. Brain regions that encode expected value should 
also be active earlier, when decisions are made and the expected value 
is computed. To identify such regions, we examined activity that para-
metrically tracked the expected probability of avoidance at the time of 
decision (Supplementary Fig. 5 and Supplementary Table 3). Positive 
effects (that is, greater activity with high avoidance value or low pain 
expectancy) were observed in the ventromedial prefrontal cortex 
(vmPFC), and in particular in the medial OFC and perigenual ACC. 
Conversely, negative activations were observed in the aMCC, lateral 
frontal pole, parietal operculum, cerebellum and visual cortex.

Network dynamics underlying aversive PE signals
To develop a brain-based model of the learning process, we used 
DCM19 to explore how the seven regions identified in the previ-
ous analysis (Fig. 3b; note that the larger midbrain cluster was not 
included in the DCM analyses) interact during learning. On the basis 
of the principles governing reinforcement learning models (Fig. 2a), 
regions that encode aversive PEs (PAG) should receive converging 
input from those that encode expectancies (vmPFC, putamen, hip-
pocampus) and primary reinforcement (nociceptive) signals. Afferent 
nociceptive signals in PE-encoding regions should be cancelled out 
by expectancy-related information when those signals are fully  
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Figure 4 DCM of aversive prediction errors at outcome onset (number 
of participants = 23). This model was identified as the most likely 
of all the models tested (see Supplementary Figs. 6–9) by Bayesian 
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predicted1,18. Regions important for action value and decision-making  
(aMCC, OFC, dmPFC) may receive converging PE and primary  
reinforcement signals.

As is increasingly common with DCMs, we tested a family of similar 
models to identify the most likely configuration of connections based on 
the data. This is conceptually analogous to optimizing parameter values 
(for example, in linear regression), except that we search over models, 
identifying the most likely pattern of connections given the data using 
Bayesian model selection27. We defined a model limited to brain cor-
relates of reinforcement learning model–based effects (PAG, vmPFC, 
putamen, hippocampus) and then extended the model to include other 
regions that may encode avoidance value and related properties, testing 
72 plausible models in total (see Online Methods and Supplementary 
Figs. 6–9). Hence, the final model was jointly constrained by a priori 
theoretical constraints and the evidence in the data.

In the final, most likely model (Fig. 4), vmPFC projects most 
directly to PAG among value-encoding regions, and avoidance  
value is most closely related to the putamen, which transmits value 
information to vmPFC. Then PE and expected value signals from 
the midbrain and putamen are transmitted to OFC and aMCC, 
with effects on dmPFC mediated by OFC. Noxious input had direct 
effects on PAG, in keeping with the known anatomy of the ascending 
spino-mesencephalic nociceptive pathway28 and modulatory effects 
on ascending putamen-to-OFC, putamen-to-aMCC and midbrain-
to-aMCC connections. These modulatory effects are plausible given 
that the spino-thalamic tract and other pathways provide separate 
channels of ascending nociceptive input that are distinct from spino-
mesencephalic inputs to the PAG.

DISCUSSION
Toward a neural systems model for aversive PEs
Pain has obvious motivational functions, both shaping and being 
shaped by learning, but we still know very little about the basic neural 
processes underlying its influence on human behavior. Using a com-
bination of reinforcement learning computational models, axiomatic 
tests and DCM models, we identified a candidate system that allows 
humans to avoid actions associated with pain. In this model, a system 
of interconnected forebrain regions including the putamen, hippoc-
ampus and vmPFC encodes expected value signals. Expectations are 
then compared with primary nociceptive inputs in the PAG to gener-
ate aversive PE signals. These signals shape expectations maintained 
in medial prefrontal-temporal-striatal systems and are also conveyed 
to forebrain structures involved in behavioral decisions and choice 
(aMCC, dmPFC and OFC).

Our data and connectivity models identify the PAG as a primary site 
for aversive PEs, in contrast to previous neuroimaging findings and 
theories that a single system drives appetitive and aversive PEs29. The 
centrality of the PAG for aversive PEs is consistent with both anatomical 
and neurophysiological evidence in animals. The PAG receives mono-
synaptic inputs from both nociceptive spinal projection neurons28 and 
top-down projections from the vmPFC30, positioning it as a potential 
comparator of bottom-up aversive sensations with expectations. It also 
sends monosynaptic, reciprocal projections to the vmPFC—which is 
essential for value updating in the reinforcement learning framework 
and likely for behavioral choice as well31—and to aMCC32, OFC and 
other areas involved in determining action value and coordinating 
defensive behavior18,33. The aMCC in particular is critical for pain 
avoidance18 and is heavily connected to motor and premotor centers.

The central role of the PAG in aversive PEs is also consistent with 
several prominent animal models of aversive learning34. These models  
suggest that the PAG is critical for integrating expectations with 

ascending nociceptive information. Though animal studies have not 
formally tested the axioms that satisfy aversive PEs directly, as we have 
here, several functional properties of the PAG in animals are con-
sistent with PE signaling1, such as higher firing rates to unexpected 
versus expected punishment1,18. These expectancy effects seem to be 
mediated by inhibition of ascending nociceptive inputs through the 
release of endogenous opioids in the PAG1, which blocks nociceptive 
responses when pain is expected. This converging animal evidence 
suggests that opioidergic modulation of the PAG may be a critical 
element of aversive PEs.

Overlap in systems for reward and aversive PEs
The nature and degree of overlap between appetitive and aversive learning  
is intensely debated. On the one hand, some proponents of a unitary  
system for reward and aversion have stressed the close coexistence of neu-
ronal populations signaling appetitive and aversive value in structures  
including the striatum and ventral tegmental area35. Other arguments 
in favor of a unitary system come from neuroimaging studies showing 
that a common set of regions activates (vmPFC, striatum) or deacti-
vates (ACC, insula, dorsolateral prefrontal cortex) parametrically with 
increasing outcome value across both aversive (monetary losses) and 
appetitive (monetary gains) domains36,37. However, these findings 
may be caused by framing of the outcomes as relative gains or losses  
compared to the alternative and hence not truly reflect categorical simi-
larities between appetitive and aversive learning systems. That is, losing 
endowed money may not engage learning systems adapted for primary 
punishments like pain, and both the nature of the reinforcer (primary 
versus secondary) and the specific type of reinforcement (thermal pain 
versus loss) may be important.

On the other hand, imaging studies using primary aversive rein-
forcers such as pain have converged on a set of candidate regions that 
are potentially specific to aversive learning, including the brainstem, 
amygdala, OFC, insula and ACC2,10,12,14,38, but the results across 
studies have also been mixed. Part of this variability could be due to 
heterogeneity in the response properties of different neuronal subpop-
ulations39, but also to the fact that latent variables derived from rein-
forcement learning models, such as PEs, are by definition correlated 
with related signals, such as expected values or outcome information. 
As a result, PE signals within a given voxel can be highly correlated 
with expected values or outcome information. In the case of our study, 
regions tracking parametric estimates of aversive PEs strongly over-
lapped with regions signaling pain onsets (Supplementary Fig. 2), 
making them indistinguishable without more fine-grained tests.

Here the use of axiomatic tests allowed us to dissociate regions track-
ing aversive PEs from similar, intrinsically correlated signals such as 
expectancy and nociception or pain. Only the PAG showed consistent 
evidence for aversive PEs in all axiomatic tests. By contrast, activity 
in a VS ROI previously shown to fulfill all axiomatic requirements for 
an appetitive PE signal9 showed no evidence for aversive PE signals, 
although it encoded appetitive PEs to monetary rewards in a separate 
experiment using a similar design. Conversely, activity in the PAG did 
not correlate with appetitive PEs to monetary rewards, suggesting that 
there is at least partial segregation between aversive and appetitive 
systems at the level of PEs. Indeed, the functional neuroanatomy of the 
PAG strongly indicates it is highly specialized in the treatment of intrin-
sically aversive stimuli26,40. Among other primary aversive reinforcers, 
PAG is activated by painful events41, aversive images24,42 and social 
threats43. By contrast, a recent meta-analysis of over 200 neuroimaging 
studies found no reliable reward-related signal in the PAG44.

By contrast, vmPFC activity seems to reflect expected positive  
value in a variety of contexts and paradigms45, including reward  
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learning, economic choice46, pain avoidance11 and extinction/
extinction recall47. Our results are consistent with the vmPFC as the 
most direct representation of value as related to choice and learning 
(Fig. 3 and Supplementary Fig. 5) and most closely connected to 
the PAG in the retained DCM model. This is consistent with recent 
findings that the vmPFC may act as a hub or convergence point for 
different types of expected value signals, such as experience-based 
expected value signals computed in the putamen and model-based 
value signals computed in the caudate48. Hence, our results seem to 
indicate both a convergence between appetitive and aversive systems 
in value representations in the vmPFC and a segregation between 
the two systems when these expected values signals are integrated 
with ascending aversive unconditioned stimulus inputs in the PAG 
to generate PE signals.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Participants. Twenty-six healthy, right-handed participants completed the study 
(mean age = 26.7 ± 7.6 years, 14 females). The sample consisted of 52% Caucasian, 
20% Asian, 16% Hispanic and 12% African-American participants. All partici-
pants provided informed consent. The study was approved by the Columbia 
University Institutional Review Board. Preliminary eligibility was assessed  
with a general health questionnaire, a pain safety screening form and an fMRI 
safety screening form. Participants reported no history of psychiatric, neurological  
or pain disorders. Three participants were excluded from the analysis  
because of poor performance on the task (see section on reinforcement  
model-based analysis below).

Thermal stimulation. Thermal stimulation was delivered to the volar surface 
of the left (nondominant) inner forearm using a 16 × 16 mm Peltier thermode 
(Medoc). To minimize the effects of peripheral sensitization/habituation, the ther-
mode was moved to a new skin spot after each run. Each stimulus lasted 9 s with 
2.5-s ramp-up and ramp-down periods and 4 s at target temperature. Temperatures 
were individually calibrated to be at a level 7 on a continuous scale ranging from 
0 to 8 (0, no sensation; 1, nonpainful warmth; 2, low pain; 5, moderate pain; 
8, maximum tolerable pain) during a practice session performed on a separate  
day before the imaging session. On the basis of this procedure, a single  
temperature level was selected within each participant’s tolerance limit. The average  
temperature of the stimuli was 47.4 ± 1.71 °C.

experimental task. The pain avoidance instrumental learning task comprised 
150 trials (divided in 6 runs of 25 trials), during which subjects had to select the 
option with the lowest probability of being followed by a painful thermal stimu-
lation. The probabilities associated with each option were independent of one 
another and varied from trial to trial according to pairs of random walks. Four 
pairs of random walks were selected on the basis of the criterion that they must 
cross (reverse) at least one time (see Supplementary Fig. 10); each participant 
was randomly administered one of the four pairs.

Each trial (see Fig. 1a) started with the presentation of the two options (circle 
or square, randomly displayed to the left or right) for 1,800 ms, during which 
participants had to enter their decision by pressing the left or right button of the 
response unit. If the participant did not have time to make a choice (<1% of trials), 
the computer randomly selected a response for them. After a feedback period of 
200 ms and an anticipation period of 4,000 ms, the fixation point changed from 
an asterisk (*) to a cross (+) that stayed on the screen for 9,000 ms to mark the 
period during which participants could receive a painful thermal stimulation. 
After that stimulation period, the fixation point changed back to an asterisk for 
a jittered inter-trial interval of 6,600, 7,800, 9,000, 10,200 or 11,400 ms. On a day 
before the imaging session, participants performed a practice session with a dif-
ferent pair of random walks and options (diamond and triangle) from the ones 
they received during the imaging session. During that practice session, they were 
carefully instructed about all aspects of the experiment, except the actual prob-
abilities of pain that they had to infer. Participants provided on-line continuous 
ratings of pain (0, no sensation; 1, nonpainful warmth; 2, low pain; 5, moderate 
pain; 8, maximum tolerable pain) for the practice, but not imaging, session.

fmRI data acquisition and preprocessing. Data acquisition. Whole-brain 
fMRI data were acquired on a 1.5-T GE Sigma TwinSpeed Excite HD scanner 
(GE Medical Systems) at the Functional MRI Research Center at Columbia 
University. Functional images were acquired with a T2*-weighted, two-
dimensional gradient echo spiral in/out pulse sequence49 (repetition time  
(TR) = 3,000 ms; echo time = 30 ms; flip angle = 84°; field of view = 224 mm; 
64 × 64 matrix, 3.5 × 3.5 × 2.2 mm voxels, 64 slices). To maximize signal in the 
vmPFC, slices were tilted by 30° from AC–PC axis, resulting in a loss of coverage 
in dorsoposterior parietal areas, including S1 in the arm area. We were therefore 
unable to assess the contribution of S1 in pain avoidance learning. Each run lasted 
10 min 20 s (206 TRs). Stimulus presentation and data acquisition were controlled 
using E-Prime software (Psychology Software Tools). Responses were made with 
the right hand via an MRI-compatible response unit (Resonance Technologies). 
Visual stimuli were presented through goggles positioned on the scanner head 
coil (Avotech).

Preprocessing. Before preprocessing, global outlier time points (that is, ‘spikes’ 
in BOLD signal) were identified by computing both the mean and the s.d. (across 

voxels) of values for each image for all slices. Mahalanobis distances for the  
matrix of slice-wise mean and s.d. values (concatenated) × functional volumes 
(time) were computed, and any values with a significant χ2 value (corrected for 
multiple comparisons based on the more stringent of either false-discovery-rate 
or Bonferroni method) were considered outliers. Less than 1% of images were 
outliers. The output of this procedure was later used as a covariate of noninterest 
in the first-level models.

Functional images were slice-acquisition-timing and motion corrected using 
SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK). Structural T1-
weighted images were registered to the first functional image for each subject 
using an iterative procedure of automated registration using mutual information 
co-registration in SPM8 and manual adjustment of the automated algorithm’s 
starting point until the automated procedure provided satisfactory alignment. 
Structural images were normalized to MNI space using SPM8, interpolated to 
2 × 2 × 2 mm voxels, and smoothed using a 6-mm full-width at half maximum 
Gaussian kernel.

Reinforcement model-based analysis. Participants’ decisions were modeled as 
a function of previous choices and rewards using a temporal difference algo-
rithm. Specifically, the predicted value for options “square” and “circle” (Vsquare 
or Vcircle) were updated in the direction of the obtained reward using a delta 
rule with learning rate α whenever that option was chosen [Vchosen option(t +1) = 
Vchosen option(t) + α × (rt − Vchosen option(t))], where rt is the reward (pain = −1; no 
stimulus = 0) obtained at trial t. The probability of choosing option i over j at 
trial t was determined by a softmax distribution, where the inverse temperature 
parameter β controls the strength of the competition between the two options: 
p(choicet = “square” | Vsquare(t), Vcircle(t)) = exp(βVsquare (t))/[(exp(βVsquare(t)) + 
(exp(βVcircle(t))]. Model fits were estimated by negative log likelihoods (smaller 
values indicate better fit).

The temporal difference model could not be fitted or gave aberrant α or β 
values (α = 1 or 0; β = 0) for three subjects. This was caused by complete reliance 
on a win-stay, lose-shift strategy (one subject), frequent switches in choice fol-
lowing absence of pain, which was caused by use of an irrelevant strategy (one 
subject) or numerous missing responses (20% missing; one subject). These three 
subjects were excluded from further analyses because their choices revealed that 
they were not behaving in accordance with the experience-based, incremental 
type of learning under study5. The average α and β values for the remaining par-
ticipants were then used to estimate their trial-by-trial expected values (Vsquare(t) 
and Vcircle(t)) and prediction errors (rt − Vchosen option(t)). Note that the temporal 
difference model does not make any assumption about participants’ conscious 
expectations. Rather, expected values estimates reflect latent variables that are 
necessary for learning to avoid pain, but the conscious or unconscious nature of 
this learning process remains unspecified.

logistic regression model. Participants’ choices were also analyzed with a logis-
tic regression model predicting the chances of switching choices as a function of 
pain delivered over the six previous trials.

fmRI data analyses. Model-based PE analysis. Statistical analyses were conducted 
using the general linear model framework implemented in SPM8. In a first model, 
boxcar regressors, convolved with the canonical hemodynamic response function, 
modeled periods of decision (onset of decision period to response; mean reac-
tion time = 732 ± 251 ms), anticipation (4 s), outcome onset (1 s) and outcome 
period (8 s). The decision to use the first 1 s of the stimulation as representing 
the onset of the stimulation was based on continuous pain ratings obtained in the 
first, pre-scan session suggesting that this is the moment when subjects begin to 
feel the thermal stimulation (see Supplementary Fig. 1). Outcome (pain = 1, no 
stimulus = −1) and aversive PE estimates were added as parametric modulators on 
all regressors (SPM orthogonalization option turned off). The inter-trial interval 
was used as an implicit baseline. The six runs were concatenated for each subject. 
A high-pass filter of 180 s was used. Other regressors of non-interest (nuisance 
variables) included (i) dummy regressors coding for each run (intercept for each 
run); (ii) linear drift across time within each run; (iii) the six estimated head 
movement parameters (x, y, z, roll, pitch and yaw), their mean-zeroed squares, 
their derivatives and squared derivative for each run (total 24 columns); and  
(iv) indicator vectors for outlier time points identified on the basis of their  
multivariate distance from the other images in the sample (see above).  
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Results were cluster-corrected (P < 0.05, FWER, two-tailed) with cluster-defining 
thresholds of P < 0.001, P < 0.01 and P < 0.05 using AFNI’s alphasim.

ROI axiomatic response profile analysis. In a second set of analyses aiming 
to characterize the profiles of activation across outcomes and expected prob-
ability of pain, trials within each type of outcome were binned into quartiles of 
expected probability of pain, resulting in 8 types of outcomes: 2 outcomes (pain 
or no stimulus) × 4 quartiles (from least to highest expected probability of pain). 
Mean activity was then extracted for each of the 8 regressors within either a priori 
PAG and VS ROIs, or ROIs defined by the conjunction analysis (see below). The 
PAG a priori ROI was constructed by aligning three overlapping 6-mm spheres 
along the central aqueduct (in mm [0 −24 −4; 0 −26 −6; 0 −29 −8]) and closely 
matched the findings of a recent meta-analysis on pain processing in the PAG40. 
The VS ROI was based on the Rutledge et al. (2010)9 nucleus accumbens ROI and 
comprised three 5-mm spheres for each hemisphere (in mm [8 13 −3; 12 13 −8;  
9 13 −7; −8 13 −3; −12 13 −8; −9 13 −7]).

To test whether or not activity profiles in the PAG and VS ROIs integrate 
outcome information with prior expectations into an aversive PE signal, we used 
an axiomatic approach initially developed to test necessary and sufficient activ-
ity for a broad class of PE models. Because our objective was to identify regions 
that encode aversive PEs, we specialized these axioms for the case of an aversive 
prediction error and a learned, continuously graded punishment expectancy by 
making particular assumptions about the sign and monotonicity of effects. This 
approach reduces the quite general axioms to more familiar algebraic tests, nota-
bly separate tests for magnitude and expectation effects, which correspond to  
the two algebraic components of PEs (PE = magnitude − expectation; see also  
refs. 6,8 for a similar approach). Moreover, in addition to the reward and  
expectancy components tested in those studies, we also test a third axiom, which 
specifies that expectation and magnitude effects are properly registered to one 
another, resulting in identical response amplitudes when outcomes are fully 
predicted. Finally, one difference between our axiomatic approach and the one 
previously used by Rutledge et al.9 is that we define reward expectancy as esti-
mated from the fit of learning model to choice behavior. This is because, in our 
task, participants’ expectations were not explicitly instructed but were instead 
derived from their reinforcement history and therefore had to be computationally 
estimated before being used to test the axioms for PEs.

The three axiomatic tests used to identify aversive PE signals are described 
below. They are derived from the more general axioms of Caplin and Dean50 by 
introducing specific, plausible assumptions about the aversive case—namely, that 
higher pain is always more aversive than lower pain (monotonicity in pain inten-
sity) and that high versus low expectancies are similarly monotonic. With these 
assumptions, axiom 1 (consistent prize ordering: the outcome effect) stipulates 
that activity for pain outcomes should be higher than for no-stimulus outcomes. 
This axiom was tested by a simple t-test of the difference between averaged values 
for the four pain and four no-pain quartiles. Axiom 2 (consistent lottery ordering: 
the expectancy effect) stipulates that activity should decrease with increasing 
expected probability of pain. This axiom was tested by separately testing the 
slopes of regressions lines passing through the four quartiles for pain and no-pain 
trials, using a nonparametric multilevel sign permutation test (1,000 bootstrap 
samples). Finally, axiom 3 (no surprise equivalence: that the expectancy and 
outcome effects have the correct relationship to one another) stipulates that com-
pletely predicted outcomes should generate equivalent responses. This axiom was 
tested by a simple t-test comparing activity for the highest quartile of expected 
pain for pain trials and lowest quartile of expected pain for no-pain trials. We 
note that pain adaptation processes such as sensitization and habituation can 
cause pain itself to behave like PEs in some respects; for example, both pain and 
aversive PEs may decrease across trials and vary inversely with the intensity of 
prior pain51, causing a stronger partial overlap between aversive PE signals and 
pain itself. However, this effect explains only some of the effects tested in axiom 
2 (those on pain trials). It does not account for the effects tested under axiom 1 
or axiom 3, or effects on no-pain trials tested under axiom 2. In addition, it does 
not account for experimental effects such as effects of placebo instructions, tested 
in study 3. Thus, the axiomatic tests provide a strong test of aversive PE-related 
signal properties.

Conjunction analysis. To specifically test for the expected probability of pain 
within pain and no-stimulus trials (axiom 2), we modeled separately pain and 
no-stimulus trials and included expected probability of pain as parametric modu-
lators for pain and no-stimulus trials. We then looked at the conjunction between 

the three relevant contrast maps (pain > no stimulus, expected probability of 
pain within pain trials, expected probability of pain within no-stimulus trials), 
which were cluster-corrected (P < 0.05, FWER, one-tailed) with a cluster-defining 
threshold of P < 0.05 using AFNI’s alphasim.

Dynamic causal models. To explore how the seven different regions iden-
tified in the previous analysis (aversive PE: PAG; pain-specific PE: aMCC,  
OFC, dmPFC; expected value: vmPFC, putamen, hippocampus) interacted to 
generate aversive PE signals, we compared several probable dynamic causal 
models (DCMs) with a Bayesian model selection procedure27. On the basis 
of the principles governing reinforcement learning models (Fig. 2a), regions 
that encode aversive PEs (PAG) should receive converging input from those 
that encode expectancies (vmPFC, putamen, hippocampus) and primary  
reinforcement (nociceptive) signals. Regions important for action value and  
decision-making (aMCC, OFC, dmPFC) may receive converging PE and  
primary reinforcement signals.

Because of the large number of possible models, we began by defining a model 
limited to brain correlates of reinforcement learning model–based effects (PAG, 
vmPFC, putamen, hippocampus). We constrained this model by making two 
assumptions: (i) primary nociceptive afferents directly project to PAG28, and 
(ii) expected avoidance value is conveyed to the PAG through one or more of 
the three expected value structures (green in Fig. 3). We used Bayesian model 
selection to evaluate 32 plausible models, which varied systematically in their pro-
jections to the midbrain and connections among expected value-related regions 
(see Supplementary Fig. 6), and tested the most likely model against 7 other 
close variants27 (see Supplementary Fig. 7). Overall, the most likely configura-
tion given our data is shown in Figure 4 (black and green portions only). In this 
model, vmPFC projects most directly to PAG, and avoidance value is most closely 
related to the putamen, which transmits value information to vmPFC. Though 
this procedure cannot definitively isolate causal relationships among regions, 
this model provides a plausible working model considering the direct anatomical 
projections from vmPFC to PAG30.

We then extended the model to include other regions that may encode 
avoidance value and related properties. On the basis of existent animal models 
of fear conditioning1,18, we posited that these regions receive the PE signals 
generated in PAG. Moreover, on the basis of known anatomical projections 
of the PAG, we constrained the space of possible models by assuming that PE 
signals could be directly conveyed to the OFC and aMCC32, and indirectly to 
the dmPFC through either aMCC or OFC. However, as the sources of expected 
value signals to these regions are less informed by the existent literature, we 
allowed these regions to be functionally connected to any of the three regions 
encoding expected value signals (that is, vmPFC, putamen and hippocampus). 
Within these constraints, we evaluated 27 models that systematically varied 
connections among avoidance updating–related regions (blue) and relationships  
with expected value–related regions (green; see Supplementary Fig. 8) and  
16 additional models closely related to the best-fitting model and including 
modulatory nociceptive inputs (see Supplementary Fig. 9). The best model 
overall (Fig. 4) included (i) direct connections from both putamen and  
midbrain to OFC and aMCC, with dmPFC effects mediated by OFC, and  
(ii) modulatory effects of noxious input to putamen → OFC, putamen → 
aMCC, and midbrain → aMCC connections.

Study 2: comparison with reward prediction errors. Participants. Twenty-one 
participants (mean age, 19.3 years; range, 18–28; ten female) took part in the 
study. Informed consent was obtained in a manner approved by the New York 
University Committee on Activities Involving Human Subjects.

Monetary reward task. In the experimental task (Supplementary Fig. 3a,b; see 
also ref. 23), on each of 300 trials, participants chose one of four presented face 
stimuli and then received monetary feedback. Participants then received binary 
reward feedback, a $0.25 ‘win’ outcome represented by an image of a quarter-
dollar and a $0.00 ‘miss’ outcome represented by a phase-scrambled image of a 
quarter-dollar. Participants were instructed that each face option was associated 
with a different probability of reward, that these probabilities could change slowly, 
and that their goal was to attempt to find the most rewarding option at a given 
time to earn the most money. Across the 300 trials in the experiment, the reward 
probabilities diffused gradually according to Gaussian random walks, so as to 
encourage continual learning. Unbeknownst to the participants, the faces were 
grouped into equivalent pairs.
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Imaging procedure. Whole-brain imaging was conducted on a 3.0-T Siemens 
Allegra head-only MRI system at NYU’s Center for Brain Imaging, using a Nova 
Medical NM-011 head coil. Functional images were collected using a gradient echo 
T2*-weighted echoplanar (EPI) sequence with BOLD contrast (TR = 2,000 ms,  
TE = 15 ms, flip angle = 82, 3 × 3 × 3 mm voxel size; 33 contiguous oblique-
axial slices), tilted on a per-participant basis approximately 23 degree off of the 
AC–PC axis to optimize sensitivity to signal in the orbitofrontal cortex and the 
medial temporal lobe. The task was scanned in four blocks each of 310 volumes 
(10 min 20 s).

Behavioral analysis. Participants’ choices were analyzed with a similar temporal 
difference model to the one used for the analysis of pain-related aversive PEs, 
with the exception that an additional parameter accounted for the generalization 
of learned values from one face of a pair to the other.

Imaging analyses and results. Preprocessing and data analysis was performed 
using Statistical Parametric Mapping software (SPM5; Wellcome Department of 
Imaging Neuroscience, Institute of Neurology, London, UK). After realignment 
and normalization, images were resampled to 2-mm cubic voxels, smoothed with 
an 8-mm FWHM Gaussian kernel, and filtered with a 128-s high-pass filter. To 
identify the structures encoding appetitive prediction errors, activity at outcome 
delivery was correlated with the trial-by-trial reward PE estimates derived from 
the computational temporal difference model. Finally, we extracted the mean 
activity related to these appetitive PEs in the periaqueductal gray (PAG) and 
ventral striatum (VS) regions of interest (ROIs) used in previous analyses (see 
Fig. 2) and compared it to pain-related aversive PE signals (see Supplementary 
Fig. 3) extracted from the same ROIs.

Study 3: comparison of different pain levels. Participants. Fifty healthy  
participants completed the study (mean age = 25.1, range = 18–52 years;  
27 females). All participants gave informed consent and the experiment was 
approved by the institutional review board of the University of Colorado 
Boulder.

Thermal stimulation. Thermal stimulation was delivered to the volar  
surface of the left inner forearm using a 16 × 16 mm Peltier thermode (Medoc). 
Each stimulus lasted 11 s with 1.75-s ramp-up and ramp-down periods and  
7.5 s at target temperature. Stimulation temperatures were 46, 47 and 48 °C, and 
in between stimuli the thermode maintained a baseline temperature of 32 °C.

Experimental task. This pain-learning task consisted of 6 runs of 8 trials each 
and alternated between placebo and control runs (in counterbalanced order). In 
the placebo runs, the thermode was placed on a skin site that had been pretreated 
with a placebo analgesic cream. In the control runs, the thermode was placed on 
a site that had not been pretreated. During both the placebo and control runs, 
participants were presented with two visual cues (geometric shapes). One cue was 
always followed by a 46 °C (low pain) or a 47 °C (medium pain) thermal stimu-
lus and the other cue by a 47 °C (medium pain) or a 48 °C (high pain) thermal 
stimulus, in 50% of the trials each (see Supplementary Fig. 4a). Participants were 
not informed about these contingencies.

Each trial started with the presentation of the two cues randomly displayed at 
the left and right side of the screen for 4 s, during which participants selected the 
cue that they thought was predictive of the least pain, by means of a left or right 
button press. One to 3 s later the computer selected a cue, alternating between 
the high and the low cue. The computer’s selection was shown for 3 s and was 
immediately followed by a thermal stimulation. Note that the stimulation tem-
perature was contingent on the computer’s—not the participant’s—cue selection. 
Nine to 13 s after the thermal stimulation, a pain-rating scale was presented 

for 6 s, and participants rated their experienced pain using a trackball. The rat-
ing period was followed by a 9–13 s inter-trial interval. During the stimulation, 
post-stimulation and inter-trial intervals, a fixation cross was presented at the 
center of the screen.

Imaging procedure. Whole-brain fMRI data were acquired on a Siemens 3-T 
Trio scanner at the Center for Innovation and Creativity (CINC) in Boulder. 
Functional images were acquired with an echo-planar imaging sequence  
(TR = 1,300 ms, TE = 25 ms, field of view = 220 mm, 3.4 × 3.4 × 3.0 mm voxels, 
26 slices). Each run lasted 394 s (303 TRs).

Imaging analyses and results. The preprocessing procedure was identical to the 
one used in the main experiment (see above). Boxcar regressors, convolved with 
the canonical hemodynamic response function, were constructed to model (i) the 
periods in which visual stimuli other than the fixation cross were presented (that 
is, the cues and the rating scale), (ii) participants’ cue-selection times, and (iii) 
participants’ pain-rating times. Because the onset of the stimulation is uninforma-
tive of the pain level participants received, we used continuous pain ratings for 
three levels of thermal stimulations of identical durations (11 s; 46.5 °C, 47.5 °C, 
48.5 °C) to identify the time at which the different temperatures could be clearly 
distinguished. We identified the period between 4 and 10 s as the one conveying 
information about the pain level received, and we therefore modeled thermal 
stimuli as three successive time-windows: (iv) onset (0–4 s), (v) middle (4–10 s) 
and (vi) offset (10–11 s) (see Supplementary Fig. 4d).

We then extracted mean activity in the PAG ROI (see Fig. 2 and Supplementary 
Fig. 4c) during this middle, pain-informative window for the three different 
levels of temperature, the two different levels of predictive cues and the placebo 
versus control condition. To test whether the PAG also encoded aversive PEs in 
an intensity-dependent manner, we adapted study 1 axioms by making the addi-
tional assumption that more intense noxious stimulus intensities should be more 
aversive (that is, monotonicity of aversiveness with stimulus intensity).

To test axiom 2, we looked more specifically at activity in response to the 
medium temperature, which could be preceded by either low or high predic-
tive cues. Axiom 2 requires that aversive PEs should be higher when less pain is 
predicted. In the current experiment, this should translate into higher activity 
for low versus high cues. Moreover, if PEs are also sensitive to explicit predictions 
about pain, PEs should be higher during the placebo versus control condition 
(see Supplementary Fig. 4b).

Finally, axiom 3 stipulates that there should be no difference in signal 
strength between fully expected outcomes of different intensities. Unfortunately,  
this axiom cannot be fully tested here because the outcome is never fully  
predicted by the cue (50%–50%), and the nonlinear relationship between  
temperature and pain makes it difficult to precisely estimate expectations. 
Minimally, there should be a partial overlap between low and high cue lines  
allowing certain temperature levels to be associated with equivalent prediction 
error signals, which again entails that responses to the medium temperature 
should be higher for low versus high cues.

A Supplementary methods checklist is available.

49. Glover, G.H. & Law, C.S. Spiral-in/out BOLD fMRI for increased SNR and reduced 
susceptibility artifacts. Mag. Reson. Med. 46, 515–522 (2001).

50. Caplin, A. & Dean, M. Axiomatic methods, dopamine and reward prediction error. 
Curr. Opin. Neurobiol. 18, 197–202 (2008).

51. Jepma, M., Jones, M. & Wager, T.D. The dynamics of pain: evidence for simultaneous 
site-specific habituation and site-nonspecific sensitization in thermal pain. J. Pain 
15, 734–746 (2014).

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.


	Representation of aversive prediction errors in the human periaqueductal gray
	Main
	Results
	Behavioral results
	Aversive prediction error signals
	Studies 2 and 3: monetary rewards and varying pain levels
	Expectancies and other learning-related variables
	Network dynamics underlying aversive PE signals

	Discussion
	Toward a neural systems model for aversive PEs
	Overlap in systems for reward and aversive PEs

	Methods
	Participants.
	Thermal stimulation.
	Experimental task.
	fMRI data acquisition and preprocessing.
	Reinforcement model-based analysis.
	Logistic regression model.
	fMRI data analyses.
	Study 2: comparison with reward prediction errors.
	Study 3: comparison of different pain levels.

	Acknowledgements
	References


	Button 2: 
	Page 1: Off



