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Brain and psychological determinants of placebo
pill response in chronic pain patients
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James W. Griffith3, Thomas J. Schnitzer4,5 & A. Vania Apkarian1,5,6

The placebo response is universally observed in clinical trials of pain treatments, yet the

individual characteristics rendering a patient a ‘placebo responder’ remain unclear. Here,

in chronic back pain patients, we demonstrate using MRI and fMRI that the response to

placebo ‘analgesic’ pills depends on brain structure and function. Subcortical limbic volume

asymmetry, sensorimotor cortical thickness, and functional coupling of prefrontal regions,

anterior cingulate, and periaqueductal gray were predictive of response. These neural traits

were present before exposure to the pill and most remained stable across treatment and

washout periods. Further, psychological traits, including interoceptive awareness and

openness, were also predictive of the magnitude of response. These results shed light on

psychological, neuroanatomical, and neurophysiological principles determining placebo

response in RCTs in chronic pain patients, and they suggest that the long-term beneficial

effects of placebo, as observed in clinical settings, are partially predictable.
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The placebo response refers to an improvement in symp-
toms caused by receiving an inert treatment. The phe-
nomenon has been observed across different conditions,

biological systems, and treatment types1. Placebo analgesia is
especially relevant in the management of chronic pain, since most
pharmacological treatments have long-term adverse effects or
addictive properties2, or show only modest improvements that
are insufficient to achieve clinically meaningful amelioration of
disability3. Placebo responses are observed universally in almost
all randomized placebo-controlled clinical trials (RCT), including
those testing chronic pain treatments4–6. Importantly, the effect
size of placebo response is often equivalent to the active treatment
studied7 and often even greater than that seen in conventional
therapy6. The duration of placebo responses has been shown to be
comparable to those achieved with active treatments and the
magnitude of placebo responses appear to be increasing in recent
RCTs of neuropathic pain conducted in the US7. This implies that
the placebo effect will remain a confounding nuisance in clinical
testing and practice as long as its underlying properties remain
unknown, and as long as approaches that predict this response or
reliably harness it for medical benefit are not developed.

The neurobiological mechanisms underlying the placebo effect
have been primarily studied for acute responses to conditioning-
type manipulations or suggestion-based paradigms in healthy
individuals, usually performed in the laboratory setting8–11. In
healthy subjects, placebo response and its neural and psycholo-
gical correlates lack consistency across different routes of
administration12–14. Moreover, the translation of such findings to
clinical settings is questionable not only because chronic pain
patients exhibit distinct brain anatomy and neurophysiology15–18

but also because such patients are repeatedly exposed to a myriad
of medical rituals which may bias expectations toward treatment.
Thus, it is likely that the principles of placebo pill analgesia in
clinical settings may not be captured by experimental models of
placebo.

A number of brain imaging studies have examined placebo
response in the setting of a RCT. Some of these studies have
demonstrated changes in brain functions as a consequence of
placebo effects19,20. Others have shown that brain functions may
actually predispose chronic pain patients to respond to a placebo
treatment. RCTs comparing a lidocaine patch to placebo treat-
ment in chronic low back pain and duloxetine to placebo treat-
ment in osteoarthritis indicated that placebo response was
predicted, respectively, by functional connectivity of the medial
prefrontal with the insula21 and the dorsolateral prefrontal cortex
with the rest of the brain22. Unfortunately, these studies have the
caveat of not relying on a no treatment arm to control for the
natural history of the patients (e.g., spontaneous remission or
regression to the mean), and thus do not account for inherent
variability in measurements of brain activity when comparing
baseline to post-treatment periods. One study has addressed these
confounds by comparing active placebo to an inactive control
group in major depressive disorder, showing that increased
placebo-induced μ-opioid neurotransmission in limbic regions
was predictive of greater improvement of symptoms in response
to subsequent antidepressant treatment23. Similarly controlled
studies in chronic pain patients are necessary to investigate pla-
cebo responses in clinical settings.

This prospective cohort study included four neuroimaging
sessions, a large battery of questionnaires assessing personality
traits and pain characteristics, and a proper no treatment arm
that allowed us to disentangle placebo pill-related analgesia from
non-specific effects. Given that the RCT placebo effect is
embedded in predictable psychology and neurobiology and given
that metabolic activity and functional connectivity change fol-
lowing placebo response, we designed a comprehensive RCT with

two identical treatment periods (placebo or active treatment),
each followed by a washout period. This allowed us to investigate
the duration of response and potential differences in within-
subject occurrence/re-occurrence of placebo response. The repeat
brain imaging sessions were used: (1) to identify functional net-
works (constructed from spontaneous fluctuations in BOLD
signal) predictive of placebo response prior to placebo exposure;
and (2) to test stability of identified networks post-exposure to
placebo, as such networks are known to be malleable and may
change as a function of learned associations24.

The primary aim of this study was to identify the psychological
factors and the brain properties collected prior to placebo treat-
ment that would determine placebo response. Given previous
results, we hypothesized that responses to placebo pills are pre-
determined by functional connectivity between regions such as
the medial and lateral prefrontal cortex, the anterior cingulate
cortex, and the subcortical limbic structures, since they have been
implicated in both experimental25–27 and clinical placebo
response20–23. We also hypothesized that other psychological and
neurophysiological determinants, which would be more specific
to the clinical setting and to chronic pain patients will also
contribute to the prediction of placebo response. The second aim
of this study was to examine the longitudinal effect of treatment
exposures on brain properties. Based on prior studies19,20, we
hypothesized that some components of the functional networks
predisposing patients to placebo response would change as a
consequence of placebo response while others would remain
stable.

Consistent with our predictions, we demonstrate-specific psy-
chological factors, anatomical properties, and functional coupling
of the lateral prefrontal cortex predetermine placebo pill
responses. We show that components of the response-predictive
functional network showed transient properties, dependent on
the placebo response. Finally, a fully cross-validated algorithm
applied on psychological factors and functional connectivity prior
to exposure to placebo treatment successfully predicted response
magnitude to placebo pill treatment.

Results
Specificity of placebo pill response. This neuroimaging-based
placebo RCT was conducted in 129 CBP patients assessed for
eligibility, 63 of whom were analyzed (Supplementary Figure 1).
Participants visited the lab on six occasions over 8 weeks and
underwent identical scanning protocols on four of those visits
(Fig. 1a). Throughout the duration of the trial, participants used a
visual analogue scale, displayed on a smartphone app (Supple-
mentary Figure 2), to rate back pain intensity two times per day
in their natural environment. These ecological momentary
assessments (EMAs) represented the primary pain measurement
of this study and were used to determine placebo response. Sec-
ondary pain measurements were also collected but only in the lab
on each visit. These included a numeric verbal recall of their
average pain experienced over the last week (pain memory), a
numeric rating scale at time of visit (NRS, commonly used to
quantify pain in clinical trials28), the McGill Pain Questionnaire
(MPQ) sensory and affective scales, and the PainDetect. The
covariance matrix across the different pain measurements at
baseline is presented in Supplementary Figure 3 and the demo-
graphics in Supplementary Table 1.

Our study was designed to test for both the effects of placebo
pill ingestion and the effects of placebo response. We initially
tested for the effect of placebo pill ingestion by comparing the
analgesia between the 43 patients receiving placebo (PTx) with
the 20 patients comprising the no treatment arm (NoTx); for this,
we used the EMAs collected with the phone app. On average, PTx
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showed stronger diminution in pain intensity compared to NoTx
(controlling for regression to the mean, spontaneous variations in
symptoms, and/or placebo response to cues other than the pills)
(Fig. 1c; Supplementary Table 7 summarizes all statistical
outcomes). The effect sizes (E.S.) of the placebo pill ingestion
were 0.62 for treatment 1 and 0.73 for treatment 2 (Supplemen-
tary Figure 4), which are comparable with E.S. reported in the
placebo literature in chronic pain patients29,30.

Next, the 63 patients were dichotomized into Resp and NonR
based on a permutation test performed on the EMAs collected
with the phone app (baseline vs. treatments 1 or 2) to determine
within-subject improvement of symptoms (cutoff was set at

p < 0.05). The response rate indicated that placebo pill ingestion
increased the frequency of CBP patients showing pain reduction
—more patients were classified as responders in the placebo
treatment group (PTxResp 24/43: response rate of 55%)
compared to the no treatment group (NoTxResp 4/20: response
rate of 20%; χ2= 7.09, p= 0.008). This demonstrates that placebo
pill ingestion increased the response rate when considering
within-subject pain entries.

The time course of pain ratings across the RCT is displayed for
PTxResp, PTxNonR, and NoTx groups in Fig. 1d (the original
scale scores (absolute values) are presented in Supplementary
Figure 5; time course for NoTxResp is presented in
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Fig. 1 Placebo pill ingestion diminishes back pain intensity while trial participation non-specifically decreases qualitative pain outcomes. a Experimental
design and time line: CBP patients entered a six-visit (V1-6) 8-week randomized controlled trial, including baseline (BL), treatment (T1, T2), and washout
(W1, W2) periods. Participants entering and completing the study are indicated. b Example time series of smartphone app pain ratings in 2 patients (values
in parentheses are numbers of ratings). c The patients receiving placebo treatment (PTx) showed lower pain levels during the last week of each treatment
period, compared to the patients in the no treatment arm (NoTx). d Within-subject permutation tests between pain ratings entered during BL and T1 or
T2 identified responders in PTx and NoTx groups. The group-averaged %change in phone app ratings of back pain intensity (2 bins/week) is displayed in
d. e The magnitude of response represents the stronger response between the two treatment periods and is displayed in original score (left) and after
conversion in %analgesia (right). f Placebo analgesia was present the first day after placebo pill ingestion. g, h Pain intensity decreased by about 20–30%
for numerical rating scale (NRS) and memory during both treatment periods. i Qualitative outcome measures (McGill pain questionnaire, MPQ-sensory)
decreased in time similarly in all groups, including the NoTx and PTxNonR. j Principal component analyses clustered pain outcomes into 2 factors,
segregating intensity and quality. Group by time by Pain (intensity vs quality) interaction indicated that only the pain intensity was diminished by placebo
pill ingestion. In c–i number of subjects are in parentheses, &p < 0.12; *p < 0.05; **p < 0.01; ***p < 0.001, n.s. not significant. Error bars indicate SEM. For
each figure, a description of the analyses and p-values are reported in Supplementary Table 7
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Supplementary Figure 6). Importantly, pain levels at baseline
were equivalent between PTxResp, PTxNonR, and NoTx groups
(Table 1) and external factors such as pain intensity during
baseline, phone rating compliance, overall treatment compliance,
treatment duration, rescue medication usage, and previous
medication usage were not related to placebo response (Supple-
mentary Table 2). On average, responders showed a diminution
in back pain intensity that stabilized to a constant value of about
20% analgesia for both treatment and washout periods (T1, T2,
and W1, W2; Fig. 1d). Because some patients responded more
strongly to one treatment period over the other, we calculated the
magnitude of response as the highest %analgesia between the two
treatment periods. On average, the magnitude of response in the
PTxResp was 1.7 units higher than in the NoTx arm (E.S.: 1.71),
which corresponded to a 33% analgesia (Fig. 1e). Interestingly,
phone app pain ratings at the start of treatment (2 ratings on day
1 of T1) already differentiated PTx from NoTx, and PTxResp
from PTxNonR (Fig. 1f), indicating that observed analgesia is
temporally coupled with the introduction of placebo pills.

Given the phone app pain stratification, the effects of placebo
pill ingestion and/or the effects of placebo response were observed
on two additional measures of back pain intensity used as
secondary pain outcomes: NRS (Fig. 1g), and pain memory
(Fig. 1h). Results show that NRS collected in the lab correlated
with our primary pain outcome (Supplementary Figure 3) and
captured the effects of placebo pill ingestion and placebo
response. Memory of pain also correlated with our primary pain
outcome and strongly dissociated PTxResp and PTxNonR, but
also showed a non-specific improvement with exposure to the
trial (PTx and NoTx arms equally improving). Despite some
variability across these measures of pain intensity, the effects of
placebo pill ingestion and the effects of placebo response were
globally concordant across these outcomes. However, MPQ
sensory and affective scales and PainDetect poorly correlated
with our primary pain outcome (Supplementary Figure 3), did
not differentiate between treatment cohorts, and groupings
defined by the pain app showed improvement of symptoms in
all groups (Fig. 1i). We conclude that the RCT placebo response is
composed of two components: (1) a pill ingestion-related
response specifically impacting perceived intensity of chronic
pain (Supplementary Table 3), and 2) a non-specific response
reflecting the effect of time or the mere exposure to healthcare
(visits) that modulates qualitative pain measures (Fig. 1j). For the
rest of the study, we concentrate on unraveling the mechanisms
of the placebo-induced decrease in back pain intensity.

Blinding of the analyses. In this study, all brain imaging and
questionnaires data were analyzed blindly. We employed cell
scrambling to generate two random labeling of patients and all
group comparisons were performed three times (two times for
scrambled codes and one time for real labels). After completing
all the analyses, the real labeling was revealed during a public lab
meeting. The results are reported only when the real labeling of
patients could be properly identified based on the statistical tests.

Psychological factors predisposing to placebo pill response.
First, we sought to identify psychological parameters predisposing
CBP patients to the placebo pill response from a battery of
15 questionnaires with 38 subscales (Supplementary Table 4)
collected at visit 1. Figure 2a shows the covariance across
all factors used to assess personality and psychological states.
Univariate statistics were used to assess group differences and
correlations with the magnitude of response. Here, the real
labeling and the scrambled codes yielded no significant com-
parisons when correcting for multiple comparisons (Fig. 2b).
However, a number of subscales from the Multidimensional
Assessment of Interoceptive Awareness (MAIA) questionnaire
were tightly coupled with the magnitude of response, as was
the quality of “openness” from the Neo-5 personality dimensions
(Fig. 2c). In particular, Emotional Awareness (MAIA/e) and
Not Distracting (MAIA/nd) were strongly correlated with
%analgesia (Fig. 2d, e).

We also monitored positive and negative expectations at visit 2
and visit 4, prior to placebo pill exposure/re-exposure. Our results
showed that positive and negative expectations at both visits were
not different between PTxResp and PTxNonR and changes in the
levels of expectations following treatment 1 (representing the
update of expectations) were not different between the groups
(Supplementary Table 5). Thus, although a large body of
literature demonstrates the influence of expectations on the
placebo response31, expectations were not a significant factor in
the current study.

Anatomical properties predisposing to placebo pill response.
We secondly sought for anatomical properties predisposing CBP
patients to placebo pill response at visit 2 (prior to treatment 1).
The volumes of the NAc, amygdala, and hippocampus were first
examined because they represent risk factors for developing
pathological emotional states32,33, chronic pain34, and placebo
response in healthy individuals35. Comparing subcortical volumes
between PTxResp and PTxNonR was not informative. Given the
recent evidence that subcortical volume asymmetry can provide a
brain signature for psychopathologies36, we followed-up exam-
ining inter-hemispheric laterality of the combined volume of
these three structures. The PTxResp showed rightward sub-
cortical limbic volume asymmetry compared to PTxNonR, and
this asymmetry was observed in all four visits/scans (Fig. 3a).
Importantly, this result was validated using another brain seg-
mentation software (Freesurfer, Supplementary Figure 7). The
differences in anatomical properties of the cortex were assessed
with gray matter density and cortical thickness (Supplementary
Figure 8). Whole-brain cortical thickness measurements showed
that PTxNonR had thicker cortex in the right superior frontal
gyrus than PTxResp (Fig. 3b). These anatomical properties also
mildly correlated with the magnitude of placebo response
(Fig. 3c). The identification of brain morphological features,
present before treatment and persisting throughout the study,
provides evidence for placebo propensity stemming, in part, from
stable brain biology. Performing this analysis using scrambled

Table 1 Absolute levels of pain prior to treatment showed no group differences on all pain measures

Phone Memory NRS MPQa MPQs Pain detect

PTxNonR 6.22 (1.12) 6.59 (1.48) 55.10 (23.14) 3.21 (2.44) 12.54 (5.34) 9.97 (7.44)
PTxResp 6.10 (1.33) 7.26 (1.29) 60.75 (23.21) 3.54 (2.87) 11.25 (4.2) 9.58 (5.33)
NoTx 5.68 (1.14) 6.65 (1.66) 48.85 (23.33) 4.12 (2.80) 14.90 (6.11) 13.30 (6.15)
p_vals 0.33 0.26 0.24 0.58 0.08 0.12

The phone entries were averaged across the baseline period and the secondary pain assessments were collected in the lab at visit 2. These values were used as baseline measurements to determine the
%analgesia post treatment. There was no significant difference between the groups. Number in parenthesis represents the standard deviation
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codes for labeling patients generated no significant group
differences.

Functional properties predisposing to placebo pill response.
We thirdly tested whether brain functions provided useful
information to determine placebo pill response in our RCT.
Here we examined brain networks constructed from rsfMRI to
directly identify functional connectivity that predisposes patients’
response prior to placebo pill treatment, at visit 2 (Supplementary
Figure 9). Building on previous findings, we derived placebo-
related networks of interest from results in OA patients exposed
to placebo treatment in an RCT (Fig. 4a)22. We performed a
modularity analysis segregating the functional networks into
6 communities, and restricted all analyses to the default mode
network (DMN), sensorimotor (SM), and frontoparietal (FP)
communities, due to their overlap with placebo-related networks
observed in OA. Subcortical limbic regions were added along
with the PAG because of their involvement for placebo response
and in pain chronification (Supplementary Figure 9). No other
exploratory analyses were performed outside of this initially
planned strategy.

The connections differentiating the two PTx response groups
were all connected to nodes located in the VLPFC (Broadman
area 47) or the DLPFC (Broadman area 46). Precisely, PTxResp
displayed stronger connections for the link VLPFC-PreCG, and
weaker connections for links VLPFC-rACC and VLPFC/DLPFC-
PAG (Fig. 4b, c). As expected, all three networks differentiated

PTxResp from PTxNonR at visit 2 (Fig. 4d–f). Moreover, the
VLPFC-PreCG (Fig. 4d) and the VLPFC-rACC connectivity
(Fig. 4e) showed neither a main effect of time nor an interaction
effect of group × time, indicating that these connections repre-
sented time-invariant mechanisms that differentiate PTxResp
from PTxNonR across all visits. On the other hand, the initial
differences between groups of VLPFC/DLPFC-PAG connections
dissipated by visit 4 (Fig. 4f). These results therefore demonstrate
the existence of a lateral prefrontal-functional network, whose
components either stably or transiently determine the likelihood
of placebo pill response. Importantly, each component of this
VLPFC/DLPFC-functional network also tracked the magnitude of
placebo response (Fig. 4g). Here again, the scrambled codes
yielded no significant group differences.

We then examined the variability of each of these anatomical
and functional brain measurements in patients of the NoTx arm.
We observed no changes across the visits, indicating stability of
the measure without placebo effects (Supplementary Figure 10).
We further tested if the mere exposure to placebo pills, regardless
of the response, impacted these brain measurements by
comparing the PTx group with the NoTx group. These analyses
revealed absence of pill exposure effects on anatomical and
functional brain measurements (Supplementary Figure 10). The
result suggests that the changes observed in VLPFC/DLPFC-PAG
connectivity were primarily driven by the actual placebo response
rather than by mere pill exposure or inherent variability in the
measurements.
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Classifying placebo pill response using machine learning. We
used machine learning to determine whether placebo response
could be predicted from brain imaging and questionnaires data
collected prior to placebo treatment. We implemented a nested
leave-one-out cross-validation (LOOCV) procedure where pla-
cebo outcome of each patient was predicted using an independent
training sample. Within each n-1 patients training sample set, the
model parameters were tuned using tenfolds cross-validations.
The optimized model showing the least error was then applied to
the left-out patient, repeated for every patient.

We initially used data from the questionnaires to classify the
patients into response groups (binary variable approach). Within
each training sample set, the scores of the normalized 38 subscales
were used to build the support vector machine (SVM) classifier.
SVM classification achieved an accuracy of 0.72 in classifying
placebo pill response [95% CI, 0.56–0.85]. Sensitivity of this

approach was 0.73 (95% CI, 0.52–0.88), and specificity was 0.71
(95% CI, 0.44–0.90) (Fig. 5a–d).

We next trained a classifier using brain imaging data entering
either brain anatomy or rsfMRI as predictors, but they failed at
classifying PTxResp and PTxNonR above chance level (accuracies
were <0.67, which corresponded to a z-score of 1.96). Moreover,
adding features from rsfMRI or brain anatomy to the ques-
tionnaire data did not improve the classifier’s accuracy (accuracy
of 0.65).

Predicting the magnitude of response using machine learning.
We next used Least Absolute Shrinkage and Selection Operator
(LASSO) regression to predict the magnitude of placebo response
(continuous variable approach), using a nested LOOCV proce-
dure. The model was trained in n-1 patients in an inner
loop using tenfolds cross-validations for tuning the LASSO
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parameters, and then tested in the unseen held out patient,
repeated for every patient.

As with the previous approach, we initially predicted the
magnitude of response using just the combination of question-
naire data (Fig. 5e, f). The scales contributing to the prediction of
response magnitude were: (1) the Emotional Awareness, Noticing,
and Not-Distract subscales of the MAIA Questionnaire (MAIA/e;
MAIA/nd); (2) the Non-painful Situations subscale of the Pain
Sensitivity Questionnaire (PSQ/np); (3) the Describing subscale
of the Five Facets of Mindfulness Questionnaire (FFM/d); and
(4) Openness from the NEO-FFI (Fig. 5g). The model was no
longer able to predict the magnitude of response after removing
these psychological parameters. This not only indicates their
importance for response, but also reveals that neither the
traditional psychological measures reported in healthy controls
under placebo conditioning (e.g., neuroticism, extraversion, and
optimism) nor any of the chronic pain-related personality traits
usually linked to severity of symptoms (e.g., anxiety, catastrophiz-
ing, and fear of pain) contributed to the prediction.

Next, we sought to determine if rsfMRI collected prior to
placebo pill ingestion could predict the magnitude of response.
Within each n-1 patients training sample set, we performed
feature selection to identify links correlating with the magnitude
of response (robust regression, p < 0.001) prior to the LASSO
regression. These connections were used to train a predictive
model using tenfolds cross-validations for tuning the LASSO
parameters, which was tested in the left-out patient (Fig. 5h, i).
Because the number of features and weights differed between
each loop, a “consensus” was generated by averaging the weights
across the n= 43 loops to create a final single set of weights
(Fig. 5j). The resultant network consisted of a combination of
19 weighted connections predicting the magnitude of placebo
analgesia. The most frequently selected features included links
connecting nodes located in the orbitofrontal cortex (OFC),
the PreCG, the DLPFC, the PAG, the amygdala (AMY),
the precuneus, and the supramarginal gyrus (SMG) (Fig. 5j).
Because the functional connections were restricted between 122
preselected ROIs, we can’t exclude the possibility that increasing
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the number of connections between other ROIs, or using other
metrics of brain function, may have provided a better prediction
of placebo response.

Although this set of edges was predictive of magnitude of
response prior to the first placebo treatment, the prediction did
not generalize to rsfMRI data collected at other visits post
treatment. This is likely due to the small number of connections
included in our model, which are either changing in time as a
consequence of learning and adjustment of expectations with the
introduction of a placebo treatment or due to inherent variability
of the measurements themselves.

Applying LASSO regression on features from brain anatomy
generated a predictive model, which did not correlate with the

actual magnitude of response. The model was therefore not
considered significant and is not reported.

Comparing models from brain imaging and psychological
factors. We tested whether predictive models from psychological
factors and brain functions were independent or if they instead
predicted redundant information. The predicted analgesia from
personality factors was not correlated with the predicted analgesia
from rsfMRI (Pearson correlation r= 0.23; p= 0.15). Further-
more, a linear regression entering the value of the predicted
magnitude of response from rsfMRI and the value of the pre-
dicted analgesia from the questionnaires data revealed that both
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models explained independent variance of the actual response,
suggesting that they are complementary to one another (Fig. 5k).
Thus, although the questionnaires were strong predictors of the
magnitude of response, they should not be considered as proxy
for the brain imaging data, and vice versa.

The predictive models did not generalize to the NoTx arm. We
finally tested whether our models were specific for placebo pill
analgesia or if they were predicting unspecific improvement of
symptoms. We first used univariate statistics to compare NoTx-
Resp with NoTxNonResp on the brain properties dissociating
PTxResp from PTxNonR (Figs. 3 and 4). There were no differ-
ences on any of these parameters in the NoTx group suggesting
that our results were specific for placebo response (Supplemen-
tary Figure 11). Second, we tested whether our multivariate
classifier based on psychological factors (Fig. 5a) was capable of
stratifying the patients randomized in the NoTx arm. The clas-
sifier accuracy was considered non-significant (0.65) and the
difference between predicted response rate in the NoTxResp was
not higher than in the NoTxNonR (χ2= 1.82 p= 0.18; Fig. 5i).
Finally, we applied the regression model predicting the magnitude
of response (Fig. 5k) to patients in the NoTx group, and here
again, the model was inaccurate in the NoTx (Fig. 5i). In this case,
the coefficient of correlation between the predicted and the actual
analgesia was stronger in the PTx group (Fig. 5i) than in the
NoTx group (Fig. 5i; z-test= 2.00, p= 0.046), indicating that the
model was more predictive in individuals ingesting placebo pills.

Discussion
This is the first brain imaging RCT specifically designed to study
chronic pain patients receiving placebo pills compared to a no
treatment arm. Daily pain ratings from a smart phone revealed
that patients receiving placebo pills showed stronger pain
reduction and a higher response rate compared to patients in
the no treatment arm, indicating that placebo pills successfully
induced analgesia that could not be explained by the natural
history of the patient or the mere exposure to the study. Our
results show a multiplicity of biological systems, partially over-
lapping with complex inter-relationships, underlying placebo
pill response. The identified systems seem to encompass brain
properties known to be involved in chronic pain maintenance or
in the transition to chronic pain (e.g., SM cortex thickness/
volume37), mechanisms described for placebo response in healthy
subjects experiencing acute pain38 (e.g., involvement of OFC,
DLPFC, rACC, and PAG39,40), as well as novel systems associated
with placebo pill response in chronic pain (e.g., subcortical
volume asymmetry, emotional awareness, and functional cou-
pling of the amygdala, SMG, precuneus, and PreCG). Machine
learning applied to questionnaire and brain imaging data could,
only in part, classify placebo response and predict the individuals’
magnitude of placebo response. Given the moderate to large effect
size of RCT placebo effect (also observed here), our results imply
that gaining a better understanding of placebo pill response has
important clinical utility. Our results demonstrate the psycholo-
gical, functional, and anatomical determinants of the placebo
response and suggest that once patients begin a placebo treat-
ment, their individual pain relief may be predicted in the context
of a RCT.

One of the main behavioral findings was that the treatment
outcomes exhibited a high level of dimensionality that has not
been specifically investigated or accounted for in other clinical or
basic science studies regarding modulation/perception of pain.
The no treatment arm documenting the natural history of the
patient allowed us to show that placebo treatment impacted a
particular dimension of chronic pain (pain intensity) without

changing the trajectory of pain quality (which improved in time
regardless of placebo pill ingestion and/or placebo response).
Even various measures of pain intensities—daily ratings, memory,
and NRS—provided slightly different information about the
extent of analgesia and pain fluctuations. This highlights the
importance of examining a multiplicity of pain-related outcomes
as the analgesic properties of any given treatment may not be
constrained to a single dimension of the pain experience, and the
measures used to capture analgesia may be differentially influ-
enced by different factors. Most current RCTs assessing new
treatments are designed with a single primary outcome repre-
senting a “gold standard”, thus likely missing out on the com-
plexity of treatment effects that chronic pain may exhibit. Our
behavioral results stress the importance of moving away from a
single, cross-sectional pain measurement, and demonstrate that
distinct dimensions respond differentially to placebo pill inges-
tion, impacting mainly perceived magnitude but not its qualities.
It is however possible that placebo might only impact the
intensity of pain while a successful active pharmacological
treatment would improve both intensity and qualities. This
remains an open but important area of inquiry.

Our study design included two washout periods in order to
determine stability and within-subject re-occurrence of response.
The use of EMAs allowed us to determine that placebo analgesia
started on the first day of treatment, but the return to baseline
levels of pain started only several days after washout. Thus,
the washout periods were proven too short to test the re-
occurrence of response. Instead, our data showed a carryover
effect of the placebo response after discontinuation of treatment.

Associating a psychological profile with placebo pill response
in CBP departs from the literature regarding placebo in healthy
subjects. None of the often-cited personality traits in placebo
literature35,41–43—optimism, anxiety, extraversion, neuroticism—
successfully differentiated placebo responders from non-
responders in our chronic pain patients. In our patients, pla-
cebo pill response was driven primarily by a combination of a
greater openness to experience, increased emotional awareness,
decreased distraction about pain and discomfort, augmented
capabilities in describing inner experiences, and higher sensitivity
to non-painful situations. Our results reveal that placebo response
can be predicted from an ability to recognize subtle cues in the
body regarding emotional and physical well-being, to remain
attentive to these cues and emotions by not ignoring or sup-
pressing them, and to choose to accept these states as opposed
to becoming worried or burdened by them. These factors of
personality were able to differentiate PTxResp and PTxNonR
as well as predict the magnitude of placebo response in new
patients. These results are critical, as questionnaires are easy to
administer and may be sufficient to predict placebo pill response
in chronic pain.

In healthy individuals, the placebo response recruits endo-
genous pain pathways acting upon the opioid system to regulate
descending inhibition from the rACC9 through the PAG25, a
mechanism that can be reversed by naloxone44. Besides these
anti-nociceptive circuits, the placebo effect is also dependent on
subcortical circuitry involved in reward/aversion prediction
error, as well as higher-order frontal mechanisms (including the
DLPFC and the OFC) involved in context generation, expectation
of treatment outcomes, and emotional appraisal of events39. As
such, levels of activation in the DLPFC and the OFC are believed
to represent the strongest predictors of experimental placebo
response in healthy controls45. The present results indicate that
these systems are also part of the placebo pill response in CBP
patients, although direct correspondences between functional
networks and regional activity remain uncertain. The coupling of
the DLPFC and rACC with anti-nociceptive circuitry is also
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consistent with our previous observation that these regions were
predictive of placebo response in OA patients22. Therefore, there
are close correspondences in the mechanisms underlying placebo
pill response across different types of pain (chronic back pain
observed in this study, chronic knee pain22, and acute experi-
mental pain) and in different settings (RCT vs. laboratory).

For the placebo response-related network differentiating
PTxResp from PTxNonR, the DLPFC-PreCG, and DLPFC-rACC
links persisted in time and across visits. However, the initial
VLPFC/DLPFC-PAG connections differentiating PTxResp and
PTxNonR dissipated, likely due to this network being more
dependent on learned expectations and thus requiring novel
reinforcing experiences to become reactivated. As the VLPFC/
DLPFC-PAG includes commonly described brain regions asso-
ciated with placebo response in healthy subjects, its dissipation
with exposure is consistent with evidence pointing to the failure
of placebo re-exposure in healthy subjects in replicating the ori-
ginal placebo response12. Brain networks predicting the magni-
tude of response in a fully cross-validated procedure further
reveal the contribution of limbic circuitry, TPJ, and prefrontal
connectivity (DLPFC-PAG and OFC-PreCG) for placebo pill
response. Because the model was not stable in the post-treatment
visits, its capacity for predicting magnitude of response in a new
set of chronic pain patients remains to be determined in further
studies. The procedure was nevertheless informative regarding
the neurophysiological contributors to the placebo response. Our
original experimental design included two washout periods (W1,
W2) specifically designed to monitor perturbations in functional
features, like VLPFC/DLPFC-PAG, and to observe whether fol-
lowing washout, they would continue to track placebo pill
responders. Unfortunately, the pain trajectories showed sustained
effects of placebo analgesia during washout periods that were
proven too short to be informative regarding within subject
replication of placebo effects.

Several pitfalls have been raised when trying to predict complex
behaviors like the placebo response46. Here, many of these
potential confounds were accounted for by incorporating novel
methodological strategies such as: including a no-treatment arm
documenting the natural history of the patients, using smart
phone technology accounting for natural fluctuations of pain
outside of the clinical setting, collecting multiple pain outcome
measures, performing analyses blindly using one real code and
two scrambled codes to minimize bias, and utilizing machine
learning methods to estimate predictability in a fully cross-
validated procedure.

Some have argued that clinical trials do not provide an
appropriate context to study the psychobiology of placebo
because they are contaminated by uncontrollable confounds and
that instead placebo should be studied in a controlled environ-
ment, such as a laboratory47. Despite the complexity of the
phenomenon, our results challenge this assumption as placebo
response could be partially predicted in chronic pain patients.
Precisely, machine learning applied to psychological factors or
functional connectivity showed that magnitude of response was
predictable. The predictions from both models were not corre-
lated to one another and they were independent predictors of
analgesia. Importantly, the joint prediction from both models was
more accurate in the PTx arm compared to the NoTx, suggesting
a certain level of specificity unique to placebo analgesia. Together,
our results contribute to the placebo literature by demonstrating
the existence of psychological and neurobiological principles
determining the placebo response in RCTs.

Methods
Participants (study population). The total duration of the study lasted
~15 months. The first patient was seen on 11/06/2014, and the last patient was seen

on 02/04/2016. During that time, 129 participants with chronic low back pain
(CBP) were initially recruited from the general population and clinical referrals via
hospital databases and advertising in the community. Patients were assessed for
general eligibility via self-report using a screening intake form that the lab has used
for years in other studies; this screening interview covered co-morbid health and
psychological conditions, MRI safety, concomitant medication dosages and indi-
cations, pain levels/location/duration, current and previous illicit drug/alcohol use,
litigation status, and overall willingness to be in a research study. To meet inclusion
criteria, individuals had to be 18 years or older with a history of lower back pain for
at least 6 months. This pain should have been neuropathic (radiculopathy con-
firmed by physical examination was required), with no evidence of additional co-
morbid chronic pain, neurological, or psychiatric conditions. Individuals had to
agree to stop any concomitant pain medications and had to be able to use a
smartphone or computer to monitor pain twice a day. Additionally, the enrolled
patients had to report a pain level of at least 5/10 during the screening interview,
and their averaged pain level from the smartphone app needed to be higher than 4/
10 during the baseline rating period (explained below) before they were rando-
mized into a treatment group. Finally, for safety precautions, clinical measurements
taken at visit 1 were required to be within the pre-specified healthy range (as
determined by the standards utilized by Northwestern University Feinberg School
of Medicine Laboratory Services Department) and all participants passed the MRI
safety screening requirements at each scanning visit. Informed consent was
obtained from all participants on their first visit.

Supplementary Figure 1 consort diagram illustrates the flow of patients through
the clinical trial. From the initial 129 chronic back pain (CBP) patients recruited in
the study, 4 individuals were assessed for eligibility but met exclusion criteria
before consenting. Of the enrolled 125 patients, 43 failed to meet the inclusion
criteria at visit 1 or during the 2-week baseline period between visits 1 and 2. The
remaining 82 patients were randomized into one of three groups: no treatment (n
= 25); active treatment (n= 5); or placebo treatment (n= 57). Of the no treatment
group, n= 5 were either discontinued from the study or lost to follow-up; of the
placebo treatment group, n= 11 were either discontinued or lost to follow-up, with
an additional 2 participants being excluded from final analysis due to having
average baseline pain rating values below 4/10. The inclusion of an active treatment
group was used to ensure that the double blind for placebo treatment was
maintained for the duration of the study and that no deception took place during
the informed consent process (i.e., we could truthfully tell patients that they may
receive a placebo or they may receive an active treatment). Therefore, the 5
participants randomized in the active treatment group were not analyzed. The final
sample size included 20 CBP patients randomized to the no treatment group and
43 CBP patients randomized to the placebo treatment group; demographics for
these individuals can be found in Supplementary Table 1. Participants were
compensated $50 for each visit completed, and they were reimbursed up to $20 for
travel and parking expenses if applicable.

The number of patients recruited was based both on the power analysis and on
our previous experience with attrition rates in studies with similar patient
populations; the final sample sizes based on the following effect size estimates were
approved by the sponsor (NCCIH) prior to starting the study. We estimated our
statistical power using the Cohen’s d effect sizes for differences in pain with a
2-week placebo treatment; this was based on preliminary results from a different
study that was ongoing at the time this RCT was being planned. For responders,
we anticipated a mean decrease of 30 units on a 0–100 scale, with an estimated
standard deviation of 15; this results in an effect size estimate of 2.0. In non-
responders, the mean decrease in pain was anticipated to be negligible and we did
not expect to have enough power to detect this. Power analyses performed in
G*Power, version 3.1.3, indicated that we would have ample power—even with a
conservative estimated effect size of d= 1.0, power would be 80% for a sample size
of n= 17 per group, which would also permit detection of interaction effects. In
addition, it ensured adequate sample sizes even assuming some attrition in each
group. For brain imaging contrasts, we thought that 20 per group should be
adequate given preliminary fMRI results and earlier studies; for T1 results, our
earlier studies indicated that 20/group for within-subject contrasts would have been
adequate but possibly just at the limit for whole-brain contrasts to detect between-
group differences. Therefore, we ended up aiming for a sample size of n= 20 per
group to achieve effect sizes of about 1.0 (i.e., n= 20 placebo responders, 20
placebo non-responders, and 20 no treatment). Since, we did not classify patients
as “responders” or “non-responders” until after the study, we had no way of
knowing exact stratification of groups during the study, which resulted in slightly
uneven group sizes.

Study design and procedures. This study was conducted in the setting of a
clinical randomized controlled trial specifically designed for assessing the placebo
response (registered at https://www.clinicaltrials.gov/ct2/show/NCT02013427).
The study consisted of 6 visits spread over ~8 weeks (Fig. 1a), including a baseline
monitoring/screening period and two treatment periods, each followed by a
washout period. The design was setup to track placebo response in time and to test
the likelihood of response to multiple administrations of placebo treatment in
order to optimize accuracy in the identification placebo response. The overall
protocol included four scanning sessions collected before and after each treatment
period.
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Randomization. The randomization scheme was performed using 2 kinds of
blocks, each with 8 patients; the first block assigned 5 patients to placebo and 3
to no treatment, and the second block assigned 5 patients to placebo, 2 to no
treatment, and 1 to active treatment. Each patient ID was randomly attached to
a randomization code. The initial randomization included codes for the first 80
patients. It was followed by a second randomization of 50 additional codes about
6 months later. For those assigned to either of the treatment groups, the allocation
was performed in a double-blinded fashion: a biostatistician performed the ran-
domization; drugs were ordered and re-encapsulated by the Northwestern research
pharmacy and bottled by designated lab members; a member of the Northwestern
University Clinical and Translational Sciences (NUCATS) institute matched the
appropriate treatment drug with patients’ randomization code; critically, only this
NUCATS member had access to the document linking patient IDs to randomi-
zation IDs, and this linking information was only made available if a serious
adverse event (SAE) occurred (which did not happen). After these procedures,
study coordinators picked up the blinded agent from NUCATS for storage and
dispensing; all drugs were stored at room temperature in a locked cabinet within
the lab and monitored daily for temperature changes, bottle counts, and expiration
dates. The double blind for treatment groups was maintained by the identical
encapsulation of the study agent—blue pills were either Naproxen (500 mg) or
placebo (lactose) and bi-colored pills were either Esomeprazole (20 mg) or placebo.

Each person assigned to treatment received a mixture of blue and bi-colored
pills. This way, neither the participants nor the researchers knew which treatment
the participant had received. For those assigned to the no-treatment group, no
blind was maintained, as both study staff and participants knew that they were not
receiving the study agent. Once ~50% of all participants had been entered into the
study, a preliminary analysis of the electronic pain rating data was completed in
order to confirm that there were participants who were experiencing a diminution
in pain (no action was taken).

Description of visits. Visit 1: Participants were screened for eligibility and con-
sented on visit 1. Following informed consent, a blood sample was drawn (for a
comprehensive chemistry panel, a complete blood count, and a pregnancy test if
applicable), vital signs were taken (blood pressure, heart rate, respiration rate,
height, and weight), and a medical professional completed a physical examination
and took a comprehensive pain history. Participants were then asked to complete a
battery of 29 questionnaires regarding basic demographics, pain, mood, and per-
sonality (Supplementary Table 4). These self-reported measures were collected
online via REDCap (Research Electronic Data Capture version 6.5.16, © Vanderbilt
University) through a survey link sent to the participant’s email address (or a back-
up study email if they did not have an email account). Once submitted, ques-
tionnaire answers were finalized in the database and were rendered un-editable by
both participants and study staff. To best avoid questionnaire fatigue due to the
number of questionnaires administered, participants were allowed to take breaks
and walk around the testing room, although they were required to complete all
questionnaires at the designated visit. Any remaining information, including
clinical data collected at the visit, were entered manually into the database by study
staff. The relevant information was verified via double-data entry by different staff
members at a later time. At the end of visit 1, participants were asked to stop all
medication they were taking for controlling their pain. Rescue medication in the
form of acetaminophen tablets (500 mg each) was provided as a controlled
replacement to be used at any time in the study if their pain became too intense. At
this time, participants were also trained on how to use our electronic pain rating
application on either the phone or the computer (explained below; Supplementary
Figure 2); if participants did not have access to either, they were provided with a
smartphone and data plan for the duration of the study. The baseline rating period
started at the end of this visit and lasted until they came back for their second visit
approximately two weeks later.

Visit 2: If patients’ pain ratings and blood lab results met inclusion criteria, they
returned for visit 2 where they completed a 35-min brain imaging session that
collected a T1-weighted image, 2 resting state scans, and 2 diffusion tensor imaging
(DTI) scans (details are presented below). Following the imaging protocol, the
patients completed another battery of questionnaires, a subset of which were
repeated from the first visit to track longitudinal changes in pain. They were asked
whether they had experienced any changes in health status since the last visit.
Additionally, they were asked to verbally recall their average pain levels over the
previous 2 weeks, and over the preceding week. This self-reported recalled pain was
referred to as “pain memory” and was used as an alternative outcome measure of
pain levels.

At the end of this visit, participants were randomized into one of three groups:
no-treatment, placebo treatment (lactose) or active treatment (the standard of care,
which was a combination of Naproxen, 500 mg bid, and Esomeprazole, 20 mg bid).
Participants in the treatment groups were instructed to take a blue pill with a bi-
colored pill in the morning and again at night with plenty of water, and they were
asked to record this in their electronic rating app. Note that study staff never
informed participants about the odds for receiving active versus placebo treatment
—this is important, as the goal was to have participant’s own baseline expectations
influence whether or not they responded to the placebo treatment. Both treatment
and no treatment groups continued to receive rescue medication to use if needed,
and all participants were asked to continue rating their pain twice a day until visit
3. The duration of this first treatment period was ~2 weeks long.

Visit 3: Patients returned at visit 3 and were queried about their memory of
their pain, any changes in health since the last visit, and rescue medication usage. If
on treatment, patients were asked to report any side effects experienced and bring
back any unused medication so that study staff could calculate their treatment
compliance. Participants underwent another scanning session that was identical to
the one completed at visit 2 and completed another set of questionnaires with some
repeated from the previous visit. At the end of visit 3, individuals assigned to the
treatment group were told that the study agent would be temporarily discontinued
until their next visit so that the effects of the agent could “washout” of their system.
Again, all participants were given rescue medication to use if needed and were
asked to continue using their app twice a day until the next visit. This first washout
period was ~1 week long.

Visit 4: Patients returned at visit 4, where all measurements and procedures
from visit 2 were repeated identically, including the scanning session and
questionnaires. Again, they were queried about their pain memory, rescue
medication usage, and changes in health. The study agent was reintroduced to
those individuals allocated to one of the treatment groups according to the same
regimen described above (treatment assignment was kept the same within subjects,
as this was not a cross-over study design). During the consent process and
treatment administration, patients were informed that they were receiving the same
treatment as the one administered during the first treatment period so that
expectations were not explicitly manipulated in anyway. All participants were given
rescue medication and asked to rate their pain and mood twice a day, as with
previous visits. Like the first treatment period, the second treatment period was
also ~2 weeks in length.

Visit 5: Following this period, participants returned for visit 5, where all
measurements and procedures from visit 3 were repeated identically. Patients
underwent the same scanning procedures as on visits 2–4. Finally, patients filled
out a series of questionnaires about their pain, some of which were repeated from
the last visits. As before, those participants allocated to a study agent had their
treatment discontinued for a second washout period, which was also ~1-week long.
Participants continued to use their electronic app twice daily and were given rescue
medication if needed.

Visit 6: Patients returned for the last visit during which they were again queried
about their pain memory, changes to health, and rescue medication usage. During
this visit, the patients completed a semi-structured, open-ended exit interview with
a designated staff member. They were asked more detailed questions about their
pain and medical history, quality of life, overall mood, and time in the study.
Participants finished with a final battery of questionnaires and were asked to return
study smartphones, if applicable. There were no scanning procedures on this
visit. Any ratings submitted for the duration of the study were totaled, and in
addition to their visit compensation, participants received their compensation
for the electronic app at this time.

Monitoring pain intensity with phone app. Each patient’s pain was monitored
electronically using an application designed specifically for the study (Fig. 1;
Supplementary Figure 2). This app was used to track patients’ pain over time and
to query them on their medication usage; it could be accessed using either a
smartphone or a website link on a computer. The app had a VAS scale with sliding
bars: it asked participants to rate their current pain level from 0 (no pain) to 10
(worst imaginable). The app also included fields to indicate the participant’s
assigned ID number, query if participants had taken any rescue medication at that
time, and ask if they had taken the study medication. There was a comments
section that they could use to describe their pain, mood, or medication usage if they
chose. Participants were instructed to use the app twice a day, once in the morning
and once at night. To encourage compliance, participants were compensated $0.25
for each rating they submitted, up to $0.50/day. This additional payment was given
to them on the last visit of the trial. Submitted ratings were immediately sent to a
secure server and both date- and time-stamped. Rating compliance was assessed by
a separate program, which monitored whether the list of currently enrolled patients
had provided the necessary ratings during the previous day. In the case that a
patient omitted a rating, staff were alerted via an email. If patients missed more
than 2 consecutive ratings (~24 h-worth), a member of the study team contacted
them to remind them to use the app. Two patients were discontinued from the
study because they did not comply with the daily rating requirements despite
repeated contact from the study team.

To verify that pain levels remained within the inclusion criteria specified above,
all participants’ ratings were closely monitored for the first 2 weeks of the study as
part of a run-in/baseline pain period. Individuals not meeting this level were
deemed ineligible and did not continue in the study (n= 16 screen failures). It was
later noticed that 3 additional participants had met this exclusion criteria but
accidentally continued in the study. One person was assigned to no-treatment and
was discontinued as a protocol deviation before study completion; the other two
individuals finished the study in the placebo treatment group but were not included
in the analysis.

Preprocessing of phone app ratings. App rating data from all participants were
pre-processed as follows. Although participants were asked to rate twice a day (and
only compensated for this amount), many participants exceeded this number of
app ratings in 24 h due to over-compliance, reassessment of their pain, and/or
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cellular service problems. If pain ratings were entered within 30 min of each other,
only the last rating was kept and taken as indicative of the participant’s final
assessment of their pain levels at that time. Any additional ratings outside of this
30 min window were not considered duplicates and were kept as valid entries.
Beside this cleaning process, no other changes were made to the ratings. In the
instances where participants missed ratings, no attempts were made to interpolate
or re-sample the data so that the temporal aspects of the ratings were left intact.
The overall compliance of the phone ratings is reported for each group in Sup-
plementary Table 2.

Defining placebo response. This smartphone technology permitted us to track
fluctuation in pain levels throughout the study. Figure 1b displays the time series
generated using the pain ratings entered by participants PL001 and PL039. In this
study, we assessed two different components of the placebo response: the response
or absence of response as well as the magnitude of the response. To best make use
of the daily rating data, we initially developed a new classification scheme of
responders versus non-responders that accounts for the within-subject variability
of pain levels. Each patient was classified based on a permutation test between the
pain ratings acquired during his baseline rating period (visit 1 to visit 2) and the
pain ratings acquired during his treatment periods (either baseline versus treatment
1, or baseline versus treatment 2). The null hypothesis was generated by randomly
resampling 10,000 times the distribution of pain ratings, which provides a large set
of possible t-values obtained from the rearrangement of the pain ratings. The
overall t-value obtained between baseline and treatment was used to determine if
the null hypothesis could be rejected (p < 0.05) for each of the treatment periods. In
the cases where the null hypothesis could not be rejected for either of the treatment
periods, the patient would be stratified as a “Non-Responder”. Alternatively, the
patient would be stratified as a “Responder” if there was a significant diminution in
the pain ratings. The main advantages of using a permutation test is that it takes
into consideration the variability across pain ratings during the baseline and
treatment periods and it represents a statistically defined cutoff point for response
(unlike cutoff points arbitrarily defined by a percentage change in pain). Correcting
for autocorrelation in the time series of pain ratings did not change stratification
(Supplementary Figure 12).

Because group stratification may have dampened individual response to placebo
treatment, we secondly studied the magnitude of response by subtracting the
averaged pain ratings entered during the baseline period with the averaged pain
ratings entered during the last week of each treatment period separately. The
magnitude of analgesia was defined as the highest difference between baseline and
the 2 treatment periods. This provides a different facet of placebo response: the
placebo response identifies significant improvement of symptoms (a small but
constant improvement of symptoms may have stratified a patient as a placebo
responder) while the % analgesia rather represents a continuous measure
determining the importance of the response.

Effect sizes were calculated as the difference between the analgesia in the PTx
group and analgesia in the NoTx group, divided by the standard deviation of all the
data.

Secondary pain outcomes. The primary pain outcome measured with the phone
app was compared with five additional secondary outcome measures of pain level.
The numerical rating scale (NRS) and the memory of pain were reported as the two
other primary pain outcomes relying on numerical scales. Their correspondence
with the phone app is presented in Fig. 1i. The NRS represents the traditional
standard pain measurement usually used in clinical trials assessing pain levels of
participants for both placebo-controlled trials (compared against an active medi-
cation) and placebo-only trials (where the placebo effect is being manipulated)28.
The memory of pain represents one of the standard pain assessments used by
physicians in clinical practice and has been shown to correlate well with daily pain
diaries in previous studies48. Other pain outcomes were collected using the McGill
pain questionnaire (MPQ), affective and sensory scales, and the pain detect, which
have been widely used in both randomized clinical trials and research labs,
although their utilization in placebo-only trials remains minimal49. The neuro-
pathic pain scale (NPS) was initially administered but not included as a main pain
outcome since we aim to dissociate measurements of intensity from qualities of
pain, while the NPS represents a combination of intensity and qualities of pain.

Blinding of the analysis. Given the recent issues regarding a lack of reproduci-
bility in scientific findings50, and the importance of transparency in data analysis,
we followed recommendations by MacCoun and Pearlmutter51 and employed cell
scrambling to further blind our data and minimize bias. See Supplementary
Table 6. For all endpoints, a lab member not involved in analyses was selected to
organize data files and spreadsheets for processing and statistical analyses of the
data. This person first renamed all the data files in order to ensure that analysts
were blinded to each participant’s unique ID, and to minimize bias from previous
interactions with patients during data collection. Next, all analyses were performed
with 3 randomized codes (which we refer to here as “classifiers”) for each condi-
tion, with only one of them being the proper classification of placebo treatment
responders, non-responders, and no treatment responders and non-responders.
We refer to this as “triple blinding” because analyzers were blind to participant ID,

participant treatment, and correct participant group classification. The selected lab
member did this blinding prior to any analyses, with the exception of the pain
ratings from the app, which were used to stratify patients from the outset. As a
result, each analysis was done three different times in an unbiased manner.
Importantly, the three lab members who contributed to the analyses were not
informed that they were provided different classifiers to make sure they could not
collaborate to figure out which one was the real code. The results were presented in
a public lab meeting where the lab member un-blinded the analyzers to the data to
confirm which results were true. Although, we refer to these 3 classifiers
throughout the paper, we only present the outcomes and data from the correctly
classified group in each instance. Results from the 2 false classifiers are presented
where applicable in Supplementary material for the purpose of comparison. This
procedure aims to decrease uncontrolled bias during data analyses and to enhance
the reproducibility of results.

Brain imaging protocol and data analysis. Brain imaging data were acquired with
a Siemens Magnetom Prisma 3 Tesla. The entire procedure was completed in about
35 min, but an extra 25 min was allocated to install the patients in a comfortable
position to keep their back pain at a minimum, and to re-acquire images if the data
were contaminated by head motion.

High-resolution T1-weighted brain images were collected using integrated
parallel imaging techniques (PAT; GRAPPA) representing receiver coil-based data
acceleration methods. The acquisition parameters were: isometric voxel size= 1 ×
1 × 1 mm, TR= 2300 ms, TE= 2.40 ms, flip angle= 9°, acceleration factor of 2,
base resolution 256, slices= 176, and field of view (FoV)= 256 mm. The encoding
directions were from anterior to posterior, and the time of acquisition was 5 min
21 s.

Blood oxygen level-dependent (BOLD) contrast-sensitive T2*-weighted
multiband accelerated echo-planar-images were acquired for resting-state fMRI
scans. Multiband slice acceleration imaging acquires multiple slices simultaneously,
which permits denser temporal sampling of fluctuations and improves the
detection sensitivity to signal fluctuation. The acquisition parameters were: TR=
555 ms, TE= 22.00 ms, flip angle= 47°, base resolution= 104, 64 slices with a
multiband acceleration factor of 8 (8 × 8 simultaneously acquired slices) with
interleaved ordering. High-spatial resolution was obtained using isomorphic voxels
of 2 × 2 × 2mm, and signal-to-noise ratio was optimized by setting the field of view
(FoV) to 208 mm. Phase encoding direction was from posterior to anterior. The
time of acquisition lasted 10 min 24 s, during which 1110 volumes were collected.
Patients were instructed to keep their eyes open and to remain as still as possible
during acquisition. The procedure was repeated two times.

Preprocessing of functional images. The pre-processing was performed using
FMRIB Software Library (FSL) and in-house software. The first 120 volumes of
each functional data set were removed in order to allow for magnetic field stabi-
lization. The decision to remove this number of volumes was taken arbitrarily (it
was not motivated upon examination of data) and we explored no other option.
This left a total of 990 volumes for functional connectivity analyses. The effect of
intermediate to large motion was initially removed using fsl_motion_outliers. Time
series of BOLD signal were filtered with a Butterworth band-pass filter (0.008 Hz <
f < 0.1 Hz) and a non-linear spatial filter (using SUSAN tool from FSL; FWHM= 5
mm). Following this, we regressed the six parameters obtained by rigid body
correction of head motion, global signal averaged overall voxels of the brain, white
matter signal averaged overall voxels of eroded white matter region, and ventricular
signal averaged overall voxels of eroded ventricle region. These nine vectors were
filtered with the Butterworth band-pass filter before being regressed from the time
series. Finally, noise reduction was completed with Multivariate Exploratory Linear
Optimized Decomposition into Independent Components (MELODIC tool in FSL)
that identified components in the time series that were most likely not representing
neuronal activity. Components representing motion artefact were identified if a
ratio between activated edge (one voxel) and all activated regions on a spatial
component was >0.45, or if ratio between activated white matter and ventricle and
whole-brain white matter and ventricles was >0.35. Moreover, noisy components
were identified if the ratio between high frequency (0.05–0.1) and low frequency
(0.008–0.05) was >1. This ICA regression process was kept very conservative so
that only components obviously related to motion or noise were removed.

The functional image registration was optimized according to a two-step
procedure. All volumes of the functional images were averaged within each patient
to generate a contrast image representative of the 990 volumes. This image was
then linearly registered to the MNI template and averaged across patients to
generate a common template specific to our CBP patients. Finally, all pre-processed
functional images were non-linearly registered to this common template using
FNIRT tool from FSL. The registered brains were visually inspected to ensure
optimal registration.

On average, relative head motion was relatively low (mean frame displacement
(FD)= 0.11; std 0.07 for the first rsfMRI run, and mean FD= 0.11; std 0.09 for the
second run. Importantly, there were no group differences between the mean
relative frame displacement for either the first run (F(2,60)= 0.24; p= 0.79) or the
second run (F(2,59)= 0.66; p= 0.52).
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Parcellation scheme. The brain was divided into 264 spherical ROIs (5-mm
radius) located at coordinates showing reliable activity across a set of tasks and
from the center of gravity of cortical patches constructed from resting state
functional connectivity52 (Supplementary Figure 9a). Because subcortical limbic
structures are believed to play a role in placebo response, 5-mm radius ROIs were
manually added in bilateral amygdala, anterior hippocampus, posterior hippo-
campus, and NAc (Supplementary Figure 9b). Linear Pearson correlations were
performed on time courses extracted and averaged within each brain parcel. Given
a collection of 272 parcels, time courses are extracted to calculate a 272 × 272
correlation matrix. These matrices allowed for the construction of weighted brain
networks, where nodes represent brain regions and links represent weighted
connections from Pearson correlations between any given set of these regions.

One patient from the no treatment arm was excluded from all rsfMRI analyses
because of aberrant values in the correlation matrix (values were above 20 std from
the mean). This subject was a priori rejected during initial quality check and was
never included in any of the analyses.

Community detection analyses. We used the Louvain algorithm integrated in the
Brain Connectivity Toolbox (BCT; https://sites.google.com/a/brain-connectivity-
toolbox.net/bct/)53 to determine consistent community structures across a large
number of network partitions54. For each subject, the individual community
structure was initially constructed from 100 repetitions of the same network. The
group community was then constructed from 100 × 63 patients, generating a total
of 6300 networks. The final community structure was created by thresholding the
averaged within-module connectivity likelihood matrix at 0.5, meaning that if the
likelihood for two nodes belonging to the same module was above 50%, they were
considered in the same module. This permitted us to identify six separate com-
munities, including the four communities of interest (Fig. 2a).

Identifying communities of interest. We used localizers from an independent
data set consisting of osteoarthritis patients where placebo response was predicted
from resting state fMRI functional connectivity22. We used resting state functional
connectivity to identify four regions predicting patients in the placebo arm that
responded to treatment: the right mid-frontal gyrus connectivity (x= 28, y= 52, z
= 9), the anterior cingulate cortex (x=−3, y= 40, z= 2), the posterior cingulate
cortex (x=−1, y=−45, z= 15), and the right somatosensory cortex (x= 60, y=
−7, z= 21). We next entered these coordinates as seeds in the Neurosynth analytic
tool (http://neurosynth.org55; seed based functional networks generated in 1000
healthy subjects56) and extracted three networks sharing strong connectivity with
these seeds: the DMN, the frontoparietal network, and the sensorimotor network.
We identified communities corresponding to these networks based on spatial
overlap, by multiplying the networks of interest with the nodes pertaining to each
community. A total of 113 nodes were affiliated with these communities (Fig. 2a).
The 151 nodes affiliated with the visual and saliency communities and those nodes
without affiliation to any community were excluded from the analyses. The limbic
nodes and a node located in the PAG from the Power parcellation scheme (which
was not affiliated with any community) were added for a total of 122 nodes of
interest. This approach was part of our initial analysis design because it has many
advantages, including increasing statistical power by limiting the number of
comparisons, preventing over-fitting of the data, and identifying hypothesis-driven
functional networks with the potential of generalizing obtained results across dif-
ferent chronic pain conditions.

Network statistics. Network statistics were performed to identify brain networks
predisposing to placebo response (performed on the 122 × 122 connectivity
matrix). Group differences were examined using a permutation test (5000 per-
mutations) on the connections of the weighted network (122 × 121 nodes), con-
trolling for false discovery rate (FDR p < 0.05). We used the Network-Based
Statistics toolbox implemented in Matlab57 and freely available on the Neuroi-
maging Informatics Tools and Resources Clearinghouse (NITRC). The toolbox is
specially designed for mass-univariate testing of connections in graphs and for
accounting the dependence issue. Briefly, the first step consists of independently
test every connection in the network and identify the connections with a test
statistic value exceeding a threshold. Then, the toolbox identifies the topological
clusters among the set of suprathreshold connections. The fisher-z transformed
correlation coefficients z(r) of the significant connections were extracted at each
visit and entered in a repeated measured ANOVA testing for an interaction of time
with placebo treatment response.

Voxel-based morphometry. Gray matter density was examined using voxel-based
morphometry from FSLVBM. All T1-weighted images were first brain extracted
and then segmented into gray matter, white matter, or cerebrospinal fluid. A
common gray matter template was generated for CBP by registering and averaging
all gray matter images. The gray matter image of each participant was then
registered to the common template using non-linear transformation. A voxel-wise
permutation test was used to test the significance of group differences between
placebo responders and non-responders to a distribution generated from 5000
permutations of the data for each voxel of the template, using a sigma filter of

3 mm for smoothing. The initial analysis established significance level using the
Threshold-Free Cluster Enhancement (TFCE) method (FWE p < 0.05).

Cortical thickness. Cortical thickness was examined using Freesurfer software
library (http://surfer.nmr.mgh.harvard.edu/). In brief, the structural processing
includes skull stripping, intensity normalization, Taliarch registration, segmenta-
tion of the subcortex, reconstruction of the cortical surface, and tessellation of the
gray/white matter boundary and pial surface. Following reconstruction of the
cortical surface, brains were inflated, averaged across participants to produce a
study-specific brain, and then smoothed using a 10 mm full-width at half max-
imum Gaussian kernel. A direct measure of cortical thickness was calculated using
the shortest distance (mm) between the pial surface and gray-white matter
boundary at each point or vertex. Cortical thickness analysis for each hemisphere
was conducted using FreeSurfer’s Query, Design, Estimate, Contrast (QDEC)
graphical interface. The initial vertex-wise comparison was performed between
placebo responders and non-responders for each hemisphere. Correction for
multiple comparisons was performed using random-field-theory-based significant
clusters at p < 0.05. Values of cortical thickness were extracted in the significant
cluster surviving multiple comparison and compared between PTxNonR, PTxResp,
NoTxNonR, NoTxResp groups using a one-way ANOVA. The values of cortical
thickness in the significant cluster were then extracted at each visit and entered in a
repeated measured ANOVA.

Subcortical volumes. Volumetric analyses of T1-weighted images were performed
through automated processes using both FSL (version 5.0.8) and FreeSurfer (ver-
sion 6) software. We investigated volume differences in 3 subcortical nuclei selected
a priori; the NAc, the amygdala, and the hippocampus. After using FSL’s brain
extraction tool (BET) to remove the skull from all images, FSL’s integrated regis-
tration and segmentation tool (FIRST) was utilized to segment these specific
subcortical regions and extract their volume measurements58. Unilateral volume
measurements for each region were initially compared between responders and
non-responders. Given the recent evidence from the ENIGMA consortium
showing that subcortical volume asymmetry can provide a brain signature for
psychopathologies36, we also investigated the possibility that asymmetry differences
may provide a biomarker for placebo propensity in our data. All subcortical
regions’ volumes were summed for the right and the left hemisphere separately; for
each patient, the ratio between the two (right/left) was created, where a result= 1
would be indicative of perfect subcortical symmetry, whereas numbers >1 or <1
would indicate asymmetry biased toward the right or left hemispheres, respectively.
Volumes and subcortical asymmetry were compared between PTxNonR, PTxResp,
NoTx using a one way ANCOVA controlling for peripheral peripheral gray matter
volume, age and sex. The effect was tested across all visits using repeated measure
ANCOVA controlling for peripheral peripheral gray matter volume, age, and sex.

Analysis of questionnaire data. Over the course of the 6 visits, participants filled
out 29 unique questionnaires. These specific self-report measures were chosen for
one of 4 reasons: (1) to gather basic information about participants, including
demographics and pain/medical history, (2) to track any changes in the quality
and/or intensity of pain characteristics as measures of treatment efficacy, (3) to
monitor any changes in emotional affect which may have influenced someone’s
time in the study or their treatment response, and (4) to capture trait-based
qualities, general habits and beliefs, or state-related expectations of individuals that
may predispose them to respond to placebo. Questionnaires used to track pain and
mood changes overtime were repeated across all study visits. Questionnaires that
targeted expectations towards treatment and satisfaction after treatment were
conducted twice—either before treatment sessions (visits 2 and 4) or after treat-
ment periods (visits 3 and 5), respectively. In contrast, measures that aimed to
identify more stable traits of participants were completed at visit 1, which allowed
us to use them as possible predictors of response. Finally, a subset of questionnaires
regarding beliefs toward alternative medicines and suggestibility were administered
at the final visit after the exit interview. A full list of all questionnaires used, along
with descriptions and references, can be found in Supplementary Table 4. The data
analyzed here, with the exception of the pain questionnaires collected at every visit
to determine treatment outcome, come from those questionnaires collected at
visit 1 only, as we were interested in looking at predictors of placebo response.

Data from these self-report measures were downloaded directly from REDCap
as a CSV file and scored in Excel according to their references. Because all
questionnaires were converted to an electronic format in order to be used in
REDCap, an option to “skip” a question was provided if the participant did not feel
comfortable answering a certain item. If >20% of the data from a given
questionnaire (or questionnaire subscale, if applicable) was missing, the person’s
data for the questionnaire was not scored; for all other missing data, the mean was
used to fill in missing items (if the questionnaire had sub-scoring, the mean was
calculated from the remaining items in the sub-dimension as opposed to the entire
questionnaire); this approach is one of the most commonly used methods in data
analysis59. It was utilized in order to conserve statistical power, given our relatively
small sample size. Of all the self-report data analyzed, <3% was totally missing and
thus unable to be filled in as described above.
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For pain measurements converted in %analgesia, outliers were defined as
values exceeding 3 standard deviation from the mean and were excluded
from the analyses. For each analysis, the number of participant is displayed in
each figure.

Machine learning analyses. The predictive value of brain imaging and
questionnaires data were tested using models of machine learning. We
implemented a nested leave-one-out-cross-validation (LOOCV) procedure where
models were trained in an inner loop (n= 42) and applied to a left-out participant.
The purpose of the inner loop was to optimized the parameters of the model
through cross-validation. Once the optimal model showing the least amount of
error was identified, it was applied to the left-out participant to either classify the
patient as a PTxResp or PTxNonR or predict the magnitude of his response. This
procedure was applied to build predictive model from rsfMRI, brain anatomy and
personality independently.

Features selection. rsfMRI: The model was built based on the weighted 7381
connections from the matrices used for network analyses. Feature selection was
initially performed within the inner loop using several data reduction strategies:
principal component analyses (PCA; 42 components), unsupervised machine
learning (CorEx (https://github.com/gregversteeg/CorEx); 40 variables), or aver-
aged connectivity within and between communities. Features selection was also
performed using univariate t-test on each connection to identify group differences
(PTxResp Vs PTxNonR within the raining set; p < 0.001) or links correlating with
the magnitude of response (robust regression with %anagesia within the raining
set; p < 0.001; results shown in Fig. 5j).

Anatomy: Three different measures were used to predict the magnitude of
response using brain anatomy: (1) the averaged cortical thickness in the 74 labels
per hemispheres from the Destrieux Atlas60, (2) volumes of the 16 subcortical
structures segmented with FSL FIRST, (3) subcortical volume asymmetry
(ratio Right/Left) of these 16 subcortical structures. Because the features were
derived from different measurements, the data were normalized.

Questionnaires: All self-report measures collected at V1 were entered in the
model. Because the questionnaires were on different scales, the data were
normalized.

SVM for classifying PTxResp and PTxNonR. Support vector machine (SVM) was
used to discriminate between PTxResp and PTxNonR using fitcsvm function
implemented in Matlab. We implemented a LOOCV procedure where SVM
models were trained in an inner loop (n= 42) and applied to a left-out participant.
The box constraint and the radial basis function (rbf) kernel were optimized
through a tenfolds cross validation strategy within the inner loop. Once the optimal
SVM model was identified, it was applied to classify the left-out patient as a
PTxResp or PTxNonR.

LASSO for predicting magnitude of response. We used Least Absolute
Shrinkage and Selection Operator (LASSO) regressions to train a model predicting
the magnitude of response. Here again, we used a nested LOOCV procedure where
models were trained in an inner loop (n= 42) and applied to a left-out participant.
The inner loop determined feature selection and lambda regularization parameters
using tenfolds cross-validation. The generalization error was estimated by testing
the model to the left-out patient. The procedure was performed using the lasso
function, implemented in Matlab.

Statistical analyses. A description of each statistical test and its exact values
are reported in Supplementary Table 7. All test performed in this study were
two-sided.

Data availability. Data from our previous studies are already available on http://
www.openpain.org/. The data are part of a longitudinal study that will generate
more than one manuscript. The data will eventually be made available on open
pain once these manuscripts are completed. Since then, data are available upon
reasonable request.
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