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Abstract

The era of genome-wide association studies (GWAS) has led to the discovery of numerous genetic variants associated with
disease. Better understanding of whether these or other variants interact leading to differential risk compared with individ-
ual marker effects will increase our understanding of the genetic architecture of disease, which may be investigated using
the family-based study design. We present M-TDT (the multi-locus transmission disequilibrium test), a tool for detecting
family-based multi-locus multi-allelic effects for qualitative or quantitative traits, extended from the original transmission
disequilibrium test (TDT). Tests to handle the comparison between additive and epistatic models, lack of independence be-
tween markers and multiple offspring are described. Performance of M-TDT is compared with a multifactor dimensionality
reduction (MDR) approach designed for investigating families in the hypothesis-free genome-wide setting (the multifactor
dimensionality reduction pedigree disequilibrium test, MDR-PDT). Other methods derived from the TDT or MDR to investi-
gate genetic interaction in the family-based design are also discussed. The case of three independent biallelic loci is illus-
trated using simulations for one- to three-locus alternative hypotheses. M-TDT identified joint-locus effects and distin-
guished effectively between additive and epistatic models. We showed a practical example of M-TDT based on three
genes already known to be implicated in malaria susceptibility. Our findings demonstrate the value of M-TDT in a
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hypothesis-driven context to test for multi-way epistasis underlying common disease etiology, whereas MDR-PDT-based
methods are more appropriate in a hypothesis-free genome-wide setting.
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Introduction

The GWAS approach to genetic analysis has been successful in
the effort to uncover common genetic variants underlying sev-
eral common diseases, usually requiring large sample sizes,
aided by disease-specific consortia and meta-analyses that
have identified susceptibility loci with increasingly lower effect
sizes, as exemplified by the study of Crohn’s Disease [1].
Nonetheless, after consideration of GWAS hits, a large propor-
tion of estimated heritability for most common diseases re-
mains unexplained. The genetic architecture of common
diseases likely involves a combination of common and rare
causal variants, as well as the interplay of multiple variants and
the environment. We focus here on approaches to characterize
this complexity arising from multi-locus effects in the family-
based study design.

In genetic association studies, epistasis denotes the
nonadditive risk-modifying effect of combinations of alleles.
Screening for epistasis within a GWAS context is plagued by
two major issues: the high number of statistical tests generated
with increasing orders of epistasis considered, and the sparsity
of certain genotype configurations [2]. Data-mining methods
including multifactor dimensionality reduction (MDR) [3–5]
overcome the issue of sparsity at the expense of loss of preci-
sion by collapsing genotype classes, reviewed in [5]. Others pro-
vide algorithms that maximize the number of combinations of
markers considered without covering all possibilities exhaust-
ively so that large sets of markers may be analyzed in a reason-
able time frame such as random forests [6]. Whereas most
screening methods are more appropriate for population-based
studies, recently, MDR has been extended to family-based stud-
ies of nuclear families of all sizes, by combining MDR with the
pedigree disequilibrium test (PDT) in the multifactor dimen-
sionality reduction pedigree disequilibrium test (MDR-PDT) for
qualitative traits [4]. This was then extended in a flexible mixed
modeling approach allowing for extended pedigrees, adjusting
association signals for the presence of linkage [7]. Practical ap-
plications of family-based MDR include a study of hypertension
among Africans [8].

In parallel to the development of efficient strategies for
investigating epistasis in the GWAS context, the growing body
of functional molecular data (e.g. the ENCODE project [9]) en-
ables the formulation of highly specific hypotheses implicating
several genetic variants. Thus, it is also of current interest to de-
velop model-based statistical methods for the testing of epi-
static effects among specific alleles. Although this is
straightforward in population-based studies in the logistic or
multiple regression frameworks, this is more challenging in
family-based studies. The classical transmission disequilibrium
test (TDT) [10] identifies distortions in the transmission of al-
leles from parents to affected offspring, and has been extended
to the case of two loci. In one extension, a two-locus TDT first
estimates marginal effects of the genotypes at each locus and
then the interactive effect of the two loci, using a likelihood
ratio test, but is limited to binary traits [11]. In another

extension to two independent loci [12], over-transmission of a
specific pair of alleles is tested, one from each locus. Herein, we
show how this statistic may be generalized to three or more
loci, allowing for any number of alleles at each locus for both
qualitative and quantitative traits. A transmission is inform-
ative if one of the parents is heterozygous at one or more loci
[13]. We present a model, the multi-locus transmission disequi-
librium test (M-TDT), that does not entail collapsing of genotype
classes, and thus allows maximal specificity with respect to pat-
terns of transmitted alleles. To counter the issue of sparsity, we
show how to compute empirical P-values. In other multi-locus
approaches, the TDT has been extended to include consider-
ation of haplotypes [14, 15] or the combination of cis-variants
that are in linkage disequilibrium into a single test such as in
the family-based association test that linearly combines multi-
ple markers tests, T(LC), [16] or a test that contrasts the linkage
disequilibrium between transmitted and non-transmitted geno-
types [17]. Other non-TDT-based methods include an analysis
of variance-based test for candidate genes [18].

We thus present a generalization of the TDT method to an
arbitrary number of loci and an arbitrary number of alleles per
locus. Based on simulated data involving three markers, corres-
ponding to a number of different scenarios going from single-
locus effects to three-way epistasis, we evaluate the statistical
power of M-TDT and MDR-PDT in parallel. In a real data ex-
ample, we then applied M-TDT using a candidate gene ap-
proach to a malaria cohort from Senegal. We identified an
epistatic effect among three variants for malaria resistance.

The model
The family-based multi-way gene–gene interaction
approach (M-TDT)

We present the M-TDT approach for qualitative traits (for an ex-
tension to quantitative traits, see Supplementary Appendix).
Consider a set of N parent-affected offspring trios. Let L1, L2, . . .,
LK, be K-independent multi-allelic loci having l1, l2, . . ., lK alleles,
respectively, and denote the alleles of Li by ai

1;a
i
2; . . . ; ai

li
. The

total possible combinations of alleles across the K loci (K-tuples
of alleles) is as follows:

l ¼
YK

k¼1
lk ¼ l1 � l2 � . . .� lK

Let the two inherited K-tuples of a given affected offspring
be denoted as a1

up
; a2

vp
; . . . ; aK

rp

� �
and a1

um
; a2

vm
; . . . ;aK

rm

� �
with the

subscripts ‘p’ for paternal and ‘m’ for maternal origin, e.g. the
offspring’s genotype at locus 1 is a1

up
=a1

vm
such that (up, um) take

on values from {1, 2, . . ., l1}. All illustrations will consider three
biallelic loci (K ¼ 3). We assume that each of the K loci is in link-
age disequilibrium with corresponding disease loci, and that
the set of K disease loci are also independent from one another.
Even without independence, valid empirical P-values may be
calculated as presented under Statistical methods.
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Transmission counts

Similar to the classic TDT, the M-TDT statistic can be calculated
based on a contingency table of transmitted–untransmitted in-
formative K-tuple pairings among the N trios including fully
genotyped parent pairs. Transmissions from parents homozy-
gous at all K loci figuring along the diagonal are not informative.
If both parents are heterozygous for the same pair of alleles at
two or more loci, and if the child shares the same genotypes at
these markers, each possible configuration is weighted equally.

Transmission probabilities

Let S ¼ a1
u;a

2
v; . . . ; aK

r

� �
be the transmitted set of alleles from a

parent, whereas S’ ¼ a1
u0 ; a

2
v0 ; . . . ; aK

r0
� �

is the non-transmitted set.
Note that u and u’ take on values from {1, 2, . . ., l1}, v and v’ from
{1, 2, . . ., l2}, etc., until r and r’ from {1, 2, . . ., lK}. Let pss0 be the
probability that S is transmitted while S’ is not transmitted from
a parent to an offspring, such that S 6¼ S’.

Likelihood of the transmission model

Let mss0 be the sample frequency of informative parents with re-
spect to the transmitted set S and untransmitted set S’ of alleles.
Let nSS0 be the sample frequency of parents transmitting S and
not S’. The likelihood of the joint transmission model is given
by the following:

l a1; a2; . . . ; aK� �
¼
Y
S 6¼S0

ðpSS0 ÞnSS0 � ð1� pSS0 ÞðmSS0 �nSS0 Þ

Where ai is the vector of transmission intensities (ai
j, for j in

{1, 2, . . ., li}), or the proportion of transmitted alleles, for each al-
lele j at each locus i among heterozygous parents bearing the j
allele. Without epistasis, p is a function of allele-specific trans-
mission intensities, and with epistasis, p is a function of trans-
mission intensities for specific combinations of alleles.

The log-likelihood is then given by the following:

logl a1; a2; . . . ; aK� �
¼
X
S6¼S0

nSS0ð Þ � log pSS0ð Þ þ
X
S 6¼S0

mSS0 � nSS0ð Þ

� log 1� pSS0ð Þ

The null hypothesis

Under the null hypothesis of no linkage or no association be-
tween the K independent markers and disease, pSS0 ¼ 1/2.

The log-likelihood of the null model is then as follows:

logl0 ¼ �log 2ð Þ �
X
S 6¼S0

mSS0ð Þ

The test statistic is 2� (log l(a1,a2,. . .,aK) � log l0) � v2 with the
number of degrees of freedom (DF) depending on the alternative
model to test.

Alternative hypotheses

M-TDT considers the following alternative hypotheses, and
each is tested with a specific likelihood:

1. Only one of the K markers is linked and associated to its
corresponding disease locus
To test for the linkage of a marker locus i alone to its corres-
ponding disease locus, the transmission probabilities are given
by the following:

pSS0 ¼
ai

j

ai
j þ ai

j0

among parents having genotype ai
j=ai

j0 and transmitting allele ai
j

at that locus i, alleles ai
j and ai

j0 belong to ai
1; ai

2; . . . ; ai
li

n o
.

The v2 test statistic for the corresponding likelihood has li�1
DF. This model is equivalent to the single-locus extended TDT
for multiple alleles [19].

2. A total of p (p 5 2, 3, . . ., K) out of the K marker loci are linked
and associated to their corresponding disease loci
There are two main assumptions:

a. assuming additive effects across disease loci, the transmis-
sion probability for a given set of p alleles at p marker loci is
a function of the product of the marginal risks for the indi-
vidual alleles:

p0SS ¼
a1

u � a2
v � . . .� ap

t

a1
u � a2

v � . . .� ap
t

� �
þ a1

u0 � a2
v0 � . . .� ap

t0
� �

among parents having genotypes a1
u=a1

u0 at L1, a2
v=a2

v0 at L2, etc.,

until ap
t =ap

t0 at Lp and transmitting the set of alleles

ða1
u; a2

v; . . . ; ap
t Þ. The number of DF of the v2 statistic for the cor-

responding likelihood is (l1 – 1)þ (l2 – 1)þ . . .þ (lp – 1). The M-TDT
statistic for the concurrent transmission of specific allele sets
across loci is applied to the union of all informative individual
locus transmissions, and thus may not be derived from the indi-
vidual locus M-TDT statistics.
b. If there is epistasis among the disease loci, the risk of trans-

mission of a set of p alleles at the p marker loci is denoted
c1;2;...;p

u;v;...;t corresponding to the transmission intensity, and is
derived from the joint transmission counts for the set of
marker alleles:

pSS0 ¼
c1;2;...;p

u;v;...;t

c1;2;...;p
u;v;...;t þ c1;2;...;p

u0 ;v0 ;...;t0

The number of DF of the v2 statistic for the corresponding likeli-
hood is l1� l2� . . .�lp – 1.
Note that (u, u’) take on values from {1, 2, . . ., l1}, (v, v’) from {1, 2,
. . ., l2}, etc., until (t, t’) from {1, 2, . . ., lp}.

The number of alternative hypotheses or models, m, is a
function of K, the total number of markers:

m ¼ Kþ 2�
X

p¼2;...;K

K

p

 !
¼ 2Kþ1 � K� 2

The value of m increases with the number of loci analyzed,
given that all markers individually and combinations of 2 to K
markers are tested (as additive and epistasis models).

P-values are adjusted for multiple testing using the
Benjamini–Hochberg method [20]. Alternative hypotheses are
retained if adjusted P-values are at or below a false discovery
rate (FDR) of 0.05. Two hypotheses that are significant are
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contrasted by an empirical method, as presented in Worked
example, testing for their likelihood difference, and if not sig-
nificant, the hypothesis involving the lower number of loci or
the additive versus epistasis model is retained. The use of em-
pirical tests permits the comparison of two distinct hypotheses
that are not necessarily nested.

MDR-PDT is a statistical algorithm combining the MDR
method and the PDT for nuclear families of any size, identifying
single-locus or joint effects from among multiple loci [4].
MDR-PDT tests one composite null hypothesis of no association
and no interaction such that multi-locus effects can result from
true interactions or multiple main effects without interaction.
The MDR-PDT algorithm determines the empirical statistical
significance for single loci or joint effects, evaluating all possible
combinations, for each set of markers going from one up to a
certain prespecified total number [4].

Simulations

A simulation study was designed to compare the performance
of the M-TDT statistic with MDR-PDT across a range of scen-
arios. Three biallelic loci were simulated for each data set, and
genotypes across affected child–parent trios were generated for
1000 replicate data sets per scenario. Underlying etiologies ex-
plaining affection status were set by considering one to three
causal loci (see Supplementary Table S1). We use ‘etiology’ to
refer to models introduced into simulated data sets. The M-TDT
and MDR-PDT model yielding the lowest P-value was identified
for each replicate, and power was calculated by counting the
number out of 1000 replicates with a� 0.005 for the model
matching the simulated etiology. Similarly, the number out of
the 1000 replicates with a� 0.005 for any model incorrectly
matching the simulated etiology were counted toward the fam-
ily-wise error rate (FWER).

Evaluation of M-TDT statistical power

Global average statistical power and FWER across all scenarios
tested were 0.88 and 0.03, respectively, for M-TDT and 0.57 and
0.07, respectively, for MDR-PDT. The overall greater robustness of
M-TDT is apparent on inspection of the heat map display of
power (Figure 1, Supplementary Table S2). As expected, across
scenarios, higher sample size, higher frequency and higher effect
size were associated with higher power. Regarding MDR-PDT, in
runs with low sample sizes, power decreased with increasing al-
lele frequency for the epistasis scenarios, and in runs with higher
sample sizes (600 or 1000), power increased with increasing allele
frequency until saturation across effect sizes.

Both methods showed similar power to detect two- and
three-locus epistasis (Figure 1). Although three-locus epistasis
was the most difficult effect to detect (for M-TDT, power� 0.63
overall; excluding three-locus epistasis, power� 0.72,
Supplementary Table S2), under scenarios with frequencies� 0.
25, power reached or exceeded 0.85. Although MDR-PDT had
marginally increased power to detect epistasis, this came at the
cost of much higher FWER, which is most notable at the lower
end of the parameter spectrum. As an example, for the scenario
with parameters allele frequency ¼ 0.15, sample size ¼ 200,
effect size ¼ 2, for three-locus epistasis, power for MDR-PDT
was 0.65 whereas this was 0.22 for M-TDT. FWER was substan-
tial (0.26) for MDR-PDT whereas this was null for M-TDT. At the
higher end of the spectrum with parameters allele fre-
quency ¼ 0.25, sample size ¼ 600, effect size ¼ 3, power of the
two methods were close at 1 for MDR-PDT and 0.97 for M-TDT,

and FWER was null for both methods. Also, for all scenarios
without epistasis, M-TDT had higher statistical power than
MDR-PDT. For the single-locus scenario, for example, at the
higher end of the spectrum of parameters (allele frequency ¼ 0.
35, sample size ¼ 1000), a power of 0.5 was reached with M-
TDT, and only 0.07 with MDR-PDT. M-TDT was strikingly higher
powered for the detection of additive models involving two or
three single-nucleotide polymorphisms (SNPs) than MDR-PDT
even in scenarios at the low end.

Overall, MDR-PDT showed higher FWER than M-TDT. For M-
TDT, the FWER exceeded 0.10 only for the additive scenarios,
with a maximum of 0.19. The maximum was reached for the
three-locus additive scenario for the lowest sample size and
lowest allele frequency, and only six total scenarios reached
0.10. On the other hand, for MDR-PDT, 36 scenarios reached a
FWER of 0.10, and the maximum FWER attained was 0.44.

Worked example

We performed a candidate gene family-based association study
in a data set of 147 malaria-resistant offspring in 73 nuclear
families from two village cohorts from Dielmo and Ndiop in
Senegal (Table 1 and Supplementary Materials).

Two well-known malaria-resistant variants [HbS mutation
(or rs334) and CR1 R1601G (or rs17047661)] were selected, and 23
SNPs within the borders of the coding part of SLC4A1 6 500 kb
were evaluated for selection of one among these
(Supplementary Materials).

Family-based analyses were performed to test for association
of the markers in HBB, CR1 and SLC4A1 with malaria resistance.
Single-locus M-TDTs (equivalent to the classical TDT) were per-
formed across all SLC4A1 markers, and the most significant
marker was selected. M-TDT was implemented on the three
markers. In addition to calculating the asymptotic M-TDT test
statistics, we also calculated empirical P-values by simulating
transmissions from parents to offspring under the null hypoth-
esis of equiprobable transmission across alleles at each locus,
generating 100 000 replicates. The empirical P-values allow for
valid statistical inferences for data sets that include multiple af-
fected offspring or complex families, or where markers are in
linkage disequilibrium, or where non-nested models are con-
trasted. This includes the test of epistasis stricto sensu comparing
the additive to the epistasis models; this test was calculated as
the proportion of times the likelihood difference between the
two models in each replicate exceeded the difference in the
observed data. Across replicates, for each of the alternative
hypotheses, we calculated the empirical P-value. These empirical
P-values were adjusted using Benjamini and Hochberg’s method
for controlling the FDR [20], and the type I error rate was set at
0.05 for the FDR-adjusted empirical P-values.

Associations between HbS, rs17047661 in CR1 and
markers in SLC4A1 with malaria resistance in Dielmo
and Ndiop

Results from single-SNP M-TDTs, along with the classical fam-
ily-based association test (FBAT) [13], are presented in Table 2.
Of the two fixed variants, HbS reached statistical significance
(empirical P ¼ 0.047), whereas rs17047661 did not (empirical
P ¼ 0.139). Two SNPs in SLC4A1, rs45497993 (empirical
P ¼ 0.013) and rs2074106 (empirical P ¼ 0.007), exceeded the
threshold of 0.05. SNP rs2074106, showing the lowest P-value,
was selected for the three-locus analysis. The most significant
SNP in SLC4A1, rs2074106, was also the most significant SNP in
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Figure 1. The figure illustrates power and FWER for M-TDT and the MDR-PDT for scenarios varying the risk allele frequency, sample size and effect size, under one-,

two- or three-locus effect etiologies. Effect sizes are designated 1, 2 or 3, and represent different odds ratios depending on the etiology—see Supplementary Table S1

for details. Power (red) and FWER (blue) are based on 1000 simulated data sets per scenario using a heatmap with greater intensity of color representing higher power

or FWER. Exact power and FWER values are presented in Supplementary Table S2.
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the FBAT analysis (Table 2). Also, empirical P-values obtained
using FBAT were similar to empirical P-values obtained using
M-TDT.

M-TDT analysis demonstrated that the three-locus epistasis
model yielded the highest likelihood (M-TDT-statistic ¼ 39.4;

nominal P¼ 1.6 � 10� 6) (Tables 3 and 4), exceeding the three-
locus additive model (M-TDT-statistic ¼ 20.6; nominal P ¼
0.0001). The principal contribution to the epistasis was the se-
cond-order interaction involving rs2074106 in SLC4A1 and
rs17047661 in CR1 (M-TDT-statistic ¼ 27.7; nominal P ¼ 4.2 �
10� 6). However, the three-locus epistasis model gave a statistic-
ally significantly better fit to the data than the three-locus addi-
tive model (empirical P ¼ 0.002) and a nominally significantly
better fit to the data than the best two-locus epistasis models,
SLC4A1 and CR1 (empirical P ¼ 0.04).

Further inspection showed that the effects of every one of
the three alleles depended on the identity of the alleles at the
other loci, thus constituting three-way epistasis
(Supplementary Materials).

Discussion

Approaches for the testing of epistasis in the family-based de-
sign are critical in the characterization of the genetic architec-
ture of complex diseases. We presented the M-TDT statistic,
extending from both the biallelic TDT [10] and the two-locus
TDT [12] to a multi-locus multi-allelic TDT, for binary and quan-
titative traits in family-based studies for choosing the best

Table 1. Family structure

Number of individuals in the analyzed sample 276

Number of parents 135
Number of offspring 147
Number of offspring also having the parent status 6
Number of independent families 11
Number of nuclear families 73
Mean number of offspring per nuclear family 2
Number of nuclear families with 1 offspring 28
Number of nuclear families with 2 offspring 26
Number of nuclear families with 3 offspring 10
Number of nuclear families with 4 offspring 8
Number of nuclear families with 5 offspring 1

Note. The 276 analyzed individuals are from Dielmo and Ndiop, Senegal, fol-

lowed for clinical malaria attacks from 1990 to 2008. They were composed of re-

sistant offspring and their parents.

Table 2. Single-locus results using two TDT approaches (M-TDT and FBAT).

Gene symbol Chr rs Number Position (GRCh38) M/m MAF N T NT M-TDT FBAT

Nominal
P-value

Empirical
P-value

Nominal
P-value

Empirical
P-value

Pre-selected SNPs

CR1 1 rs17047661 207609544 A/G 0.21 108 57.8 40.1 0.070 0.139 0.150 0.14
HBB 11 rs334 5227002 T/G 0.06 50 39.3 19.1 0.008 0.047 0.050 0.04
Screened SNP
50 UTR 17 rs9910055 44205669 C/T 0.40 15 4.3 11.5 0.070 0.067 0.120 0.12
50 UTR 17 rs2071167 44210151 A/G 0.36 5 1.6 4.7 0.220 0.259 0.320 0.31
50 UTR 17 rs9901595 44228331 A/G 0.17 3 2.6 0.3 0.150 0.484 0.300 0.50
50 UTR 17 rs9906669 44228338 A/G 0.20 3 0.4 3.1 0.120 0.535 0.300 0.50
SLC4A1 17 rs8066822 44247988 C/T 0.33 7 5.6 2.0 0.180 0.291 0.280 0.26
SLC4A1 17 rs2857079 44248840 A/T 0.05 1 0.0 0.8 0.300 1.000 0.320 a

SLC4A1 17 rs1465204 44250109 C/T 0.20 7 2.1 5.2 0.250 0.347 0.350 0.35
SLC4A1 17 rs2072081 44250125 A/C 0.35 7 5.6 2.0 0.180 0.291 0.280 0.26
SLC4A1 17 rs45497993 44250506 T/C 0.33 152 52.2 89.2 0.002 0.013 0.016 0.02
SLC4A1 17 rs2857078 44252803 G/T 0.39 135 60.1 66.3 0.580 0.644 0.670 0.70
SLC4A1 17 rs45530735 44256644 A/G 0.25 106 42.6 55.2 0.200 0.302 0.320 0.34
SLC4A1 17 rs2074108 44258781 A/G 0.17 7 5.3 2.1 0.240 0.394 0.350 0.38
SLC4A1 17 rs2857082 44259723 A/G 0.30 15 10.2 5.6 0.240 0.262 0.310 0.30
SLC4A1 17 rs2074107 44260608 C/T 0.25 3 1.7 1.6 0.980 1.000 0.980 1.00
SLC4A1 17 rs5036 44261577 A/G 0.08 5 4.8 0.3 0.030 0.067 0.100 0.06
SLC4A1 17 rs2074106 44261935 A/C 0.16 84 28.8 60.8 6.3 � 10�4 0.007 0.010 0.01
SLC4A1 17 rs9916116 44268611 A/G 0.46 11 8.7 3.5 0.130 0.164 0.210 0.20
30 UTR 17 rs7222501 44277289 C/T 0.45 7 4.3 2.8 0.580 0.612 0.620 0.62
30 UTR 17 rs6503366 44280405 A/G 0.26 10 3.6 6.6 0.330 0.455 0.410 0.46
30 UTR 17 rs2879165 44283992 A/G 0.33 10 6.6 3.6 0.330 0.439 0.410 0.44
30 UTR 17 rs10852960 44302585 A/G 0.18 10 4.0 5.3 0.660 0.702 0.690 0.72
30 UTR 17 rs708386 44315254 A/G 0.22 10 4.0 5.3 0.660 0.719 0.690 0.72
30 UTR 17 rs2074104 44316126 A/G 0.39 11 6.5 3.8 0.390 0.432 0.440 0.46

Note. Chr: Chromosome number; M/m: major/minor alleles; MAF: minor (variant) allele frequency; N: number of informative transmissions, i.e. transmission from par-

ents heterozygous at the SNP; T and NT: transmission and non-transmission frequencies of the variant allele. Nominal P-values are based on asymptotic distributions

of test statistics, and empirical P-values are based on 100 000 simulations.

(a): Insufficient number of informative families. Given that the study population is composed of interconnecting nuclear families with multiple offspring, single SNP

analyses were also implemented using FBAT v2.0.3, which incorporates a combination of statistics accommodating multiplex families, unaffected offspring and miss-

ing genotype data [13], and we reported both the nominal P-values and permutation P-values. We then performed M-TDT single-SNP analysis providing empirical P-

values based on simulations to accommodate for multiplex families as in FBAT.

Family-based multi-way epistasis | 399

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/18/3/394/2453295 by M

cG
ill U

niversity Libraries user on 19 O
ctober 2020

Deleted Text: &hx2009;&hx003D;
Deleted Text: &hx2009;<sup>&hx2212;</sup>
Deleted Text: see 
Deleted Text:  
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;<sup>&hx2212;</sup>
Deleted Text: up
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw039/-/DC1
Deleted Text: DISCUSSION
Deleted Text: 


model, including epistasis. Sample sizes up to 1000 trios, and up
to 3 causal biallelic loci with risk allele frequencies ranging from
0.15 to 0.35 using simulations were used to mimic what might
be encountered in a research setting. Single-locus, two-locus
and three-locus effects (both additive and with epistasis) were
considered as alternative hypotheses using M-TDT. M-TDT was
overall more powerful and had lower FWER than another fam-
ily-based multi-locus test, MDR-PDT. In addition, through an
empirical method, M-TDT distinguishes between additive and
epistatic effects for the same loci and enables the identification
of the specific allele sets driving associations. M-TDT was used
to explore a candidate gene hypothesis: two variants known to
impact on malaria resistance were considered (the sickle cell
trait heterozygote genotype, HbS, and a non-synonymous vari-
ant in CR1, rs17047661 or R1601G), and SLC4A1 was initially
screened for variants based on single-locus results, leading to
the identification of three SNPs involved in three-way epistasis
including rs2074106 in SLC4A1.

The results of the simulation study comparing M-TDT with
MDR-PDT highlighted some of the advantages of M-TDT: at sample
sizes of 600 or more trios, high power of detection of the correct
model was achieved across scenarios implicating one to three loci
for the two higher effect sizes. Although three-locus epistasis was
the most difficult effect to detect, under scenarios with
frequencies> 0.25, power was> 0.85 and FWER was consistently
low or undetectable (maximum FWER was 0.14). These data
showed that M-TDT is particularly effective at identifying the

causally implicated markers and both additive and epistatic effects.
By contrast, using MDR-PDT at sample sizes of �600 trios and at
the two higher effect sizes, power was null for some scenarios (e.g.
two locus additive scenarios) and a FWER of up to 0.42 was re-
corded. This is not surprising, given that MDR-PDT was designed to
identify general multi-locus effects under a composite null hypoth-
esis of no association and no epistasis. Thus, although higher
power was achieved for two- and three-locus epistasis using MDR-
PDT, this was at the expense of higher FWER, and at the expense of
lower power to detect multi-locus additive effects.

In spite of high power to select the correct model from
among single-locus to all possible multi-locus combinations for
a limited number of genetic markers, M-TDT has not been opti-
mized for a genome-wide screen. In the aim of detecting epista-
sis in a genome-wide association study setting, we recommend
MDR-based methods in a first screening phase. MDR-PDT scans
a large number of markers quickly, evaluating all possible com-
binations from one up to a user-defined maximum number in
joint effects. The high statistical power to detect epistasis using
MDR-PDT would allow for markers involved in true epistasis to
be detected in this phase, even though a non-negligible propor-
tion of false positives would also be detected. Second, M-TDT
would be valuable to fine-tune alternative hypotheses, testing
for epistasis versus additive models including all combinations
of SNPs, and to identify specific risk allele combinations.
MDR-PDT identifies the markers involved given the algorithm’s
genotype-collapsing procedure, but not the specific risk alleles.

Table 3. Multi-locus transmission counts

Non-transmitted sets

{HBB, SLC4A1, CR1} set of alleles {T,A,A} {T,A,G} {T,C,A} {T,C,G} {G,A,A} {G,A,G} {G,C,A} {G,C,G}

Transmitted sets {T,A,A} 116.0 28.4 21.0 17.7 5.8 0.3 5.1 0.2
{T,A,G} 20.5 3.6 2.7 2.8 1.3
{T,C,A} 19.0 2.1 1.3 5.6
{T,C,G} 0.7 0.1 0.6
{G,A,A} 9.5 0.2 6.5 2.7
{G,A,G} 8.0 7.0 1.8
{G,C,A} 0.4 0.5 2.1
{G,C,G} 0.5

Note. Minor alleles are underlined. Cells along the diagonal are uninformative and do not contribute to the test statistic.

Table 4. M-TDT results

Association with malaria-resistant phenotype

Gene Model Alleles or sets over(1)/under(2)

transmitted
N LL1 M-TDT

statistic
DF M-TDT

nominalP
M-TDT
empiricalP

FDR-adjusted
empiricalP

HBB (rs334) Single Gþ/T� 49 �115.8 7.7 1 0.006 0.030 0.030
SLC4A1 (rs2074106) Single Aþ/C� 84 �113.8 11.7 1 6.2 � 10�4 0.007 0.010
CR1 (rs17047661) Single Aþ/G� 95 �117.4 4.6 1 0.030 0.070 0.070
HBB, SLC4A1 Additive {G,A}þ,{T,C}� 115 �111.1 17.2 2 1.9 � 10�4 0.005 0.010
HBB, CR1 Additive {G,G}þ,{T,G}� 124 �113.0 13.3 2 0.001 0.010 0.020
SLC4A1, CR1 Additive {A,A}þ,{C,G}� 148 �112.6 14.1 2 8.7 � 10�4 0.009 0.010
HBB, SLC4A1 Epistasis 115 �112.2 15.0 3 0.002 0.010 0.020
HBB, CR1 Epistasis 124 �110.0 19.3 3 2.4 � 10�4 0.002 0.008
SLC4A1, CR1 Epistasis 148 �105.8 27.7 3 4.2 � 10�6 8� 10�5 4.4 � 10�4

HBB, SLC4A1, CR1 Additive {G,A,G}þ,{T,C,G}� 173 �109.4 20.6 3 1.3 � 10�4 0.004 0.010
HBB, SLC4A1, CR1 Epistasis 173 �100.0 39.4 7 1.6 � 10�6 3 � 10�5 3.3 � 10�4

Note. N: number of informative transmissions, i.e. transmissions from parents heterozygous at least at one SNP; LL1: log-likelihood computed under the alternative

model; M-TDT-statistic: 2� (LL1�LL0) is the log likelihood-ratio-based test statistic where LL0:�119.7 is the log-likelihood computed under the null model; M-TDT

nominalP: asymptotic P-value; M-TDT empiricalP: empirical P-value; FDR-adjusted empiricalP: empirical P-value corrected for multiple testing by the FDR method.
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These features of M-TDT facilitate biological interpretation and
provide a bridge toward functional experiments. The authors of
MDR-PDT acknowledged the need for follow-up modeling after
an MDR-PDT screening phase. A previous two-step framework,
for both population- and family-based designs, was proposed
with logistic regression following MDR. The authors clearly
showed that this strategy was only appropriate for two-locus
but not higher-order epistatic effects [14]. We showed that
M-TDT performed well in the detection of three-locus epistasis,
overcoming a key limitation of the previously employed frame-
work and thus is the most appropriate choice for step 2 in a
two-step framework.

A drawback of M-TDT is the rising number of alternative
hypotheses as the number of loci increases, which substantially
increases the corrected threshold of significance. M-TDT re-
quires independence among markers, but we also propose a
method to determine empirical P-values to bypass this restric-
tion. Also, M-TDT does not accommodate missing genotype
data. However, an increasing number of markers to be tested
simultaneously increases the number of informative transmis-
sions. M-TDT does not infer parental genotypes when these are
missing using genotype data from affected and unaffected sib-
lings as other TDT-derived test statistics such as sib-TDT [15].

The real data example, an application of M-TDT to malaria
resistance, showed how three-way epistasis might be detected.
Based on the single-locus results alone, the two SNPs to pass
the FDR-corrected threshold of significance for M-TDT were HbS
and rs2074106 (SLC4A1). We identified the common allele at
rs2074106 (SLC4A1) (empirical P ¼ 0.007) as associated with mal-
aria resistance based on a single-SNP test (the biological inter-
pretation of these results is discussed in the Supplementary
Materials). In comparing results from the single-locus tests to
multi-locus tests, two orders of magnitude on the log scale were
gained, thanks to the three-way epistasis model (empirical
P ¼ 3� 10� 5). It is likely that many such combinations of alleles
implicating several independent markers impact on risk of
other diseases. The M-TDT approach presented here will facili-
tate their detection in family-based studies.

Key Points

• Although genome-wide association studies have met
with success in the detection of individual marker ef-
fects impacting on common diseases, few combin-
ations of markers showing epistatic effects—but no in-
dividual effects—have been identified.

• We present a family-based statistic (M-TDT) testing
for association between a qualitative or quantitative
phenotype and a set of independent multi-allelic
markers. All alternative hypotheses of models includ-
ing single marker effects and all combinations of
markers are tested and empirical p-values allow for
the selection of the best model.

• Power and false-discovery rates (FDR) calculated for
M-TDT and the previously published method, MDR-
PDT using simulated scenarios containing effects
including one to three associated markers, showed
higher power and lower FDR for M-TDT overall.

• Application of the method to malaria data allowed for
the identification of interaction between the sickle cell
trait, HbS, rs17047661 in CR1 (CR1-R1601G, Complement
Receptor 1) and rs2074106 in SLC4A1 (coding Band 3).

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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