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A response to environmental stress is critical to alleviate cellular
injury and maintain cellular homeostasis. Eukaryotic initiation
factor 2 (eIF2) is a key integrator of cellular stress responses and
an important regulator of mRNA translation. Diverse stress signals
lead to the phosphorylation of the α subunit of eIF2 (Ser51), result-
ing in inhibition of global protein synthesis while promoting ex-
pression of proteins that mediate cell adaptation to stress. Here
we report that eIF2α is instrumental in the control of noxious heat
sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A)
exhibit reduced responses to noxious heat. Pharmacological atten-
uation of eIF2α phosphorylation decreases thermal, but not mechan-
ical, pain sensitivity, whereas increasing eIF2α phosphorylation has
the opposite effect on thermal nociception. The impact of eIF2α
phosphorylation (p-eIF2α) on thermal thresholds is dependent on
the transient receptor potential vanilloid 1. Moreover, we show
that induction of eIF2α phosphorylation in primary sensory neu-
rons in a chronic inflammation pain model contributes to thermal
hypersensitivity. Our results demonstrate that the cellular stress
response pathway, mediated via p-eIF2α, represents a mechanism
that could be used to alleviate pathological heat sensation.
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Response to stress is a major cellular function involved in
many physiological and pathological conditions. Cells re-

spond to various forms of stress by activating specific molecular
cascades that orchestrate antistress responses or induce apoptosis
(1). A key effector of cellular stress responses is the eukaryotic
initiation factor 2 (eIF2) (2). Phosphorylation of eIF2 causes a
reduction in global translation, allowing cells to conserve energy
and modify gene expression to effectively manage stress condi-
tions. Diverse stress signals converge onto eIF2 to integrate stress
responses through phosphorylation of the α subunit of eIF2.
eIF2 binds GTP and the initiator methionyl-tRNA (Met-tRNAi)

to form the ternary complex (eIF2-GTP-Met-tRNAi). The ter-
nary complex binds the small ribosomal subunit to form the ribo-
somal preinitiation complex, which scans the 5′UTR of the mRNA
for the start codon to initiate mRNA translation (3). On engage-
ment of the initiation codon, GTP is hydrolyzed to GDP (4). The
recycling of inactive GDP-bound eIF2 to the active GTP-bound
form is catalyzed by the guanine nucleotide exchange factor, eIF2B.
Phosphorylation of the α subunit of eIF2 at serine 51 converts eIF2
from a substrate to a competitive inhibitor of eIF2B (4). Because
the amount of eIF2B is lower than eIF2, phosphorylation of a
small fraction of the eIF2 in the cell is sufficient to strongly in-
hibit eIF2B activity and translation initiation.
eIF2α is phosphorylated by four eIF2α kinases, each activated

in a different stress condition (5–7). PKR (double-stranded
RNA-dependent protein kinase) is activated by double-stranded
RNA during viral infection; PERK (PKR-like ER kinase)
by endoplasmic reticulum stress; GCN2 (general control non–

derepressible-2) by nutrient deprivation and UV light; and HRI
(heme-regulated inhibitor) by heme deficiency. The eIF2α ki-
nases, except for HRI, are prominently expressed in the mam-
malian nervous system (8).
Phosphorylation of eIF2α blocks general translation but par-

adoxically stimulates translation of mRNAs that contain upstream
ORFs (uORFs) in their 5′ UTR, such as ATF4 [a cAMP-response
element binding protein 2 (CREB-2)] and CHOP (a proapoptotic
transcription factor) (9). ATF4 enhances the expression of a related
transcription factor, ATF3, which together with ATF4 contribute to
stress adaptation by regulating genes involved in metabolism, the
cellular redox status, and apoptosis (10, 11). In neurons, an activity-
dependent decrease in eIF2α phosphorylation augments long-term
potentiation (LTP) and memory via suppression of ATF4 expres-
sion (12). Conversely, up-regulation of p-eIF2α is associated with
long-term depression (LTD) (13, 14) and several pathophysiological
conditions including viral infection, inflammation, and neuro-
degeneration (15–18). Elevated phosphorylation of eIF2α has been
documented in the brain of aged animals (19) and Alzheimer’s
disease patients and model mice (20, 21). Normalization of p-eIF2α
in Alzheimer’s disease model mice rescued deficits in protein syn-
thesis, synaptic plasticity, and spatial memory (22). Additionally,
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phosphorylation of eIF2α is associated with synaptic deficits and
neuronal loss in prion-disease model mice (23).
The role of eIF2 in the pain pathway is unknown. An endo-

plasmic reticulum (ER) stress response is induced in the periph-
eral nervous system of type I diabetic rats, as phosphorylation of
PERK and eIF2α, along with other ER stress markers, is up-
regulated (24). Induction of ER stress is accompanied by hyper-
sensitivity, and attenuation of ER stress by an inhibitor of soluble
epoxide hydrolase (sEH) down-regulated ER stress markers,
p-PERK, p-eIF2α, and reversed mechanical hypersensitivity (24).
Despite these intriguing observations, a direct link between eIF2α
phosphorylation and nociception has not been established. Using a
transgenic mouse model with reduced phosphorylation (by ∼50%)
of eIF2α (eIF2α+/S51A), we show that p-eIF2α controls thermal,
but not mechanical, sensitivity via the regulation of transient re-
ceptor potential vanilloid receptor 1 (TRPV1) activity. Moreover,
we find that eIF2α phosphorylation is induced in primary noci-
ceptors in a chronic inflammation model and that it contributes to
inflammatory pain hypersensitivity.

Results
p-eIF2α Is Increased in Dorsal Root Ganglia After Chronic Inflammation.
First, we examined the distribution of eIF2α and its phosphory-
lated form, p-eIF2α, in dorsal root ganglia (DRGs) and spinal
cord. Immunostaining revealed neuronal expression of eIF2α
and p-eIF2α in peptidergic (CGRP-positive), nonpeptidergic (IB4-
positive), TRPV1-positive small diameter, and NF200-positive
large diameter neuronal cell bodies in DRGs (Fig. 1 A and B).
Colocalization analysis showed that 19.7% of p-eIF2α–positive
cells express CGRP, 36.6% express IB4, 20.8% express TRPV1,
and 47% express NF200 (Fig. 1B, Bottom). In the dorsal horn of
the spinal cord, eIF2α and p-eIF2α were found in neurons, as they
colocalized with the neuronal marker NeuN, but not with the as-
trocyte marker, glial fibrillary acidic protein (GFAP) (Fig. S1).
However, in the spinal cord p-eIF2α signal was rather weak and
detected only in a small fraction of NeuN-positive neurons (Fig. S1).
To determine whether phosphorylation of eIF2α is affected by

chronic inflammation, we injected complete Freund’s adjuvant
(CFA) s.c. into the mouse hind paw (intraplantar injection) and
measured the levels of p-eIF2α in lumbar DRGs and dorsal horn
of the spinal cord. Levels of p-eIF2α were increased in DRGs,
but not in the spinal cord, 1 d after the onset of inflammation,
decreased subsequently, and returned to normal after 10 d (Fig.
1C). The alterations in p-eIF2α concurred with the inflammation-
induced changes in thermal and mechanical thresholds (Fig. 1D),
raising the possibility that the increase in eIF2α phosphorylation
mediates the inflammatory hypersensitivity.

P-eIF2α Controls Thermal Sensitivity.Having established that p-eIF2α
is increased in DRGs in response to chronic inflammation, we
investigated its role in nociception. To this end, we used a
transgenic knock-in (KI) mouse model (25), in which serine-51 is
mutated to a nonphosphorylatable alanine residue in one allele
(eIF2α+/S51A, homozygous KI mice are not viable), leading to a
∼50% reduction in basal eIF2α phosphorylation (Fig. 2A). Me-
chanical sensitivity in the von Frey and tail clip tests did not
differ between eIF2α+/S51A mice and their WT littermates (Fig. 2B).
However, thermal withdrawal and nocifensive behavior latencies
were significantly prolonged in eIF2α+/S51A mice compared with
WT mice in the radiant heat paw withdrawal, hot water tail with-
drawal, and hot-plate tests (40.2 ± 9.7%, 44.0 ± 13.1%, and 21.6 ±
6.6% increase, respectively; Fig. 2C), indicating reduced sensitivity
to noxious heat in eIF2α+/S51A mice. No difference in sensitivity to
noxious cold was observed between WT and eIF2α+/S51A mice (Fig.
2D). eIF2α+/S51A mice also exhibited reduced inflammatory pain in
the formalin test. Nocifensive (licking/shaking) behavior was sig-
nificantly reduced (by 31.9 ± 6.0%) in eIF2α+/S51A mice during the
late/tonic phase (10–60 min after formalin injection), compared

with WT mice, whereas no differences were found in the early/
acute phase (0–10 min) between these groups (Fig. 2E). The be-
havioral differences occurred despite equal degrees of paw edema
in the two genotypes (Fig. 2E). Taken together, these results
demonstrate that p-eIF2α is up-regulated in DRGs in response to
chronic inflammation, and mice with reduced eIF2α phosphory-
lation exhibit decreased heat sensitivity but not mechanical
sensitivity.
As eIF2α is phosphorylated by four different kinases (Fig. 3A),

it was pertinent to study the effect of each kinase on p-eIF2α and
thermal threshold. Because HRI expression is very low in the
nervous system (12), we examined sensitivity to noxious heat in
Perk+/− (Perk−/− exhibits severe postnatal growth retardation)
(26), Pkr−/−, and Gcn2−/− mice. Perk heterozygous had reduced
p-eIF2α in DRGs and decreased noxious heat sensation (43.0 ±7.7%
increase in latency to withdrawal in the radiant heat paw with-
drawal test; Fig. 3B). Mechanical thresholds in the von Frey test
were not altered in Perk+/− mice, similar to eIF2α+/S51A mice.
Gcn2−/− and Pkr−/− mice did not display a significant reduction
in p-eIF2α level and sensitivity to noxious heat (Fig. 3 C and D);
however, double KO mice for Gcn2 and Pkr (Gcn2/Pkr DKO)
exhibited reduced p-eIF2α levels (Fig. 3C) and elevated thermal
thresholds (Fig. 3E). This finding suggests a redundant role for
these two kinases.
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Fig. 1. eIF2α is expressed in DRG neurons and its phosphorylation is in-
creased in an inflammatory pain model. The distribution of total and p-eIF2α
in mouse lumbar DRG was examined using immunostaining. Total (A) and
p-eIF2α (Β) were costained with CGRP, IB4, TRPV1, and NF200. Percent of
p-eIF2α–positive neurons expressing the markers is shown in B (Bottom).
(C) Mice were injected (intraplantar) with CFA, and levels of eIF2α phos-
phorylation were measured in DRGs at different time points after injection
using Western blot analysis (n = 4 mice per condition). (D) CFA induces
thermal (Left) and mechanical (Right) hypersensitivity as assessed in radiant
heat paw withdrawal and von Frey assays, respectively (n = 5 males and 4
females per assay). Data are presented asmean± SEM. *P < 0.05, **P < 0.01 by
Bonferroni post hoc test following one-way ANOVA. (Scale bar, 100 μm.) For
distribution of eIF2α and p-eIF2α in the spinal cord, see Fig. S1.
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Next, we examined whether modulation of eIF2α phosphory-
lation by drugs alters the thermal threshold. eIF2α phosphory-
lation was decreased by an inhibitor of eIF2α kinase, PKR
(PKRi) (27). i.p. administration of PKRi over 3 d reduced nox-
ious heat sensation in a dose-dependent manner, as indicated by
the increased withdrawal latency in the radiant heat paw with-
drawal test (Fig. 3F), with no effect on mechanical threshold.
Conversely, when eIF2α phosphorylation was increased by i.p.
administration of Sal003, an inhibitor of the eIF2α phosphatase
complex, GADD34/PP1 (growth arrest and DNA-damage-
inducible 34/protein phosphatase1) (28) (Fig. 3A), thermal
thresholds were decreased (Fig. 3 G and H), whereas mechanical
thresholds were not affected. In summary, using genetic and
pharmacological approaches, we show that decreasing eIF2α
phosphorylation reduces noxious heat sensation, whereas increasing
p-eIF2α levels engenders the opposite effect.

TRPV1 Activity Mediates the Effect of Reduced p-eIF2α on Thermal
Thresholds. The strikingly specific impact of eIF2α phosphoryla-
tion on noxious heat sensation suggests that mechanisms con-
trolling heat transduction might be selectively controlled. TRPV1
channels transduce noxious heat and are also implicated in in-
flammation-induced thermal hypersensitivity (29). TRPV1 activity
is tightly regulated via gene expression and posttranslational
mechanisms (30). We examined the possibility that TRPV1 me-
diates the effect of eIF2α phosphorylation on heat sensation by
studying the impact of PKRi and Sal003 on thermal thresholds in
Trpv1−/−mice (29). PKRi increased thermal threshold in WTmice,
but not in Trpv1−/− mice (Fig. 4A). Conversely, Sal003 decreased

thermal threshold in WT mice, but not in Trpv1−/− mice (Fig.
4B). These data demonstrate that eIF2α phosphorylation con-
trols thermal threshold in a TRPV1-dependent manner. To as-
sess TRPV1 activity, we recorded TRPV1-dependent currents in
sensory neurons from eIF2α+/S51A and WT mice. Capsaicin, a
specific TRPV1 agonist, elicited significantly smaller currents in
dissociated DRG neurons prepared from eIF2α+/S51A compared
with WT mice (92% decrease in eIF2α+/S51A neurons; Fig. 4C).
For whole-cell recordings, small-diameter (<30 μm) neurons
were selected, and only capsaicin-sensitive neurons (∼30% of all
tested neurons in WT and eIF2α+/S51A groups) were included in
the analysis. Resting membrane potential (Vrest), input resistance
(Rin), and membrane capacitance (Cm) were not different be-
tween WT and eIF2α+/S51A neurons (WT Vrest −49.74 ± 3.41 mV,
eIF2α+/S51A Vrest −46.79 ± 3.99 mV, P = 0.584; WT Rin 686.21 ±
117.41 MΩ, eIF2α+/S51A Rin 517.13 ± 38.41 MΩ, P = 0.193; WT
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Fig. 2. Noxious heat sensation is reduced in eIF2α+/S51A mice. (A) eIF2α
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Cm 13.67 ± 2.18 pF, eIF2α+/S51A Cm 14.68 ± 1.95 pF, P = 0.735,
n = 8/genotype). Moreover, using calcium imaging, we ob-
served smaller capsaicin-induced calcium transients in cultured
eIF2α+/S51A DRG neurons compared with WT neurons (Fig.
4D). The cell body diameter of the responding neurons was not
different between the two genotypes (WT 19.18 ± 0.45 μm, n =
53, eIF2α+/S51A 19.32 ± 0.39 μm, n = 88, P = 0.81). Consistent
with these results, intraplantar s.c. administration of capsaicin
induced significantly less nocifensive behavior in eIF2α+/S51A

compared with WT mice (Fig. 4E). Conversely, mice with high
p-eIF2α levels, following Sal003 injections, exhibited increased
nociceptive responses to capsaicin (Fig. 4F). Despite the reduction

in the amplitude of TRPV1-mediated currents in eIF2α+/S51A

neurons, Western blot analysis showed that protein levels of
TRPV1 in cytosolic and membrane fractions of DRG lysates
from eIF2α+/S51A mice were not changed compared with WT
mice (Fig. 4G). To examine whether trafficking of TRPV1 to the
cell surface is affected by eIF2α phosphorylation, we used a
surface biotinylation assay followed by Western blot analysis of
TRPV1. We found no differences in TRPV1 amounts on the cell
surface (Fig. 4H), indicating that TRPV1 activity, but not protein
levels or trafficking to the plasma membrane, is reduced in
eIF2α+/S51A neurons. Taken together, these data indicate that
TRPV1 is an important mediator of the effect of p-eIF2α on the
thermal threshold and suggest that TRPV1 activity is modulated
by eIF2α phosphorylation.

PKR-Mediated eIF2α Phosphorylation Contributes to Thermal
Hypersensitivity. After establishing that eIF2α phosphorylation
regulates thermal sensation, we studied whether CFA-induced
increase in p-eIF2α contributes to thermal hypersensitivity.
eIF2α kinase, PKR, has been implicated in inflammatory re-
sponses (31). Thus, we assessed PKR activation in DRGs following
CFA injection and found that levels of p-PKR were significantly
increased (Fig. 5A), raising the possibility that the increase in
p-eIF2α is mediated via PKR activation. Consequently, we
assessed thermal and mechanical hypersensitivity of Pkr−/−mice after
CFA-induced inflammation. Pkr−/− mice exhibited reduced thermal,
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but not mechanical, pain hypersensitivity after CFA injection
(Fig. 5B). Moreover, p-eIF2α increased after CFA injection in
DRGs of WT mice, but not in Pkr−/− mice (Fig. 5C). These data
demonstrate that PKR is required for the up-regulation of p-eIF2α
following CFA and contributes to thermal hyperalgesia.
TNF-α induces a robust up-regulation of eIF2α phosphoryla-

tion in cultured cells and in the nervous system via activation of
PKR (32–36). Because TNF-α is a major proinflammatory cy-
tokine (37–40), which plays a critical role in the pathogenesis of
inflammatory pain (41, 42), we examined whether inflammation-
induced TNF-α promotes eIF2α phosphorylation. First, we
showed that TNF-α elevates p-eIF2α in HEK293 cells, replicat-
ing previous studies (Fig. 5D). Importantly, intrathecally de-
livered TNF-α increased p-eIF2α in DRGs of WT mice, but not
Pkr−/− mice (Fig. 5E), supporting the idea that TNF-α stimulates
p-eIF2α via PKR. In accordance with previous reports, TNF-α
(i.t.) induced heat hyperalgesia in WT mice (37), whereas in
Pkr−/− mice this hyperalgesia was significantly attenuated (Fig.
5F). Taken together, these results demonstrate that TNF-α- and
PKR-dependent eIF2α phosphorylation contributes to chronic
inflammation-induced thermal hypersensitivity.

Discussion
Here we describe a previously unrecognized role for the cellular
stress response pathway in nociception. Transgenic mice with
decreased eIF2α phosphorylation (eIF2α+/S51A) exhibited re-
duced responses to noxious heat and attenuated nocifensive
behavior in the late phase of formalin test, whereas cold sensi-
tivity and mechanical thresholds were not altered. The noxious
heat-specific phenotype was recapitulated in transgenic mice in
which the eIF2α kinases PERK and PKR/GCN2 were reduced or
knocked out, as well as in response to pharmacological manip-
ulation of eIF2α phosphorylation. Reducing eIF2α phosphory-
lation with a PKR inhibitor attenuated noxious heat sensitivity,
whereas increasing eIF2α phosphorylation with Sal003 had the
opposite effect. Our findings indicate that the effect of p-eIF2α
on thermal nociception is mediated via modulation of TRPV1
activity. First, we show that pharmacological modulation of
eIF2α phosphorylation altered noxious heat sensation in WT
mice, but had no effect in mice lacking TRPV1. Second, capsa-
icin-induced TRPV1-mediated currents and pain behavior were
greatly reduced in eIF2α+/S51A mice. Taken together, these data
demonstrate that the eIF2α pathway controls noxious heat sen-
sation via TRPV1. Because we found no evidence of alterations
in TRPV1 protein levels or trafficking to the membrane, we
postulate that the mechanism by which eIF2a phosphorylation
affects thermal sensation involves modulation of TRPV1 activity.
Under inflammatory conditions, TRPV1 can be sensitized by nu-
merous inflammatory mediators (e.g., bradykinin, nerve growth
factor, prostaglandins, serotonin, and histamine), via multiple ag-
onists and modulators [protein kinase A (PKA), protein kinase C
(PKC), metabolites of the cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome-P450 (CYP)-pathways, phospholipids,
protons, and heat, among others], leading to the reduction in the
activation threshold and eventually to pain hypersensitivity (43,
44). The modulators, which mediate the sensitization of TRPV1
activity by p-eIF2α, remain to be determined. eIF2α phosphory-
lation promotes translation of ATF4 mRNA (9, 11). Interestingly,
ATF4 is increased in DRGs following facet joint distraction (45).
Moreover, ATF4 transcriptionally activates ATF3 expression,
which is a well-known cellular marker of nerve injury (46). This
evidence suggests that some of the effects of p-eIF2α on thermal
thresholds could be mediated by ATF4/ATF3 axis.

We show that TNF-α induces p-eIF2α in WT but not in Pkr−/−

mice, indicating that TNF-α up-regulates p-eIF2α via PKR. PKR
is activated after CFA injection, suggesting that TNF-α–mediated
activation of PKR contributes to p-eIF2α up-regulation and
thermal hypersensitivity. Our results do not exclude the involve-
ment of other eIF2α kinases. For example, ER stress induces a
robust PERK activation (19), which has a strong effect on eIF2α
phosphorylation and thermal sensitivity (Fig. 3B).
A recent study found that hyperglycemia, activation of unfolded

protein response (UPR), or dysregulation of calcium homeostasis
induce ER stress in primary sensory neurons, as evident by the
activation of PERK (and eIF2α), inositol-requiring enzyme 1a
(IRE1a), ATF6, MAPK (p38 and JNK), and autophagy (LC3)
(24). Whether the ER stress-induced mechanical pain is caused by
elevated p-eIF2α or through other mechanisms was not docu-
mented. Because elevated p-eIF2α affects thermal, but not me-
chanical thresholds, it seems unlikely that the effects of ER stress
on nociception are mediated via p-eIF2α, but could be attributed
to the activation of p38 and JNK or to other ER stress-dependent
mechanisms. Increased p-eIF2α was also documented in the
sciatic nerve of rats with presumed neuropathic pain (47); how-
ever, the impact of this phosphorylation event on nociception has
not been investigated.
Recent preclinical studies concluded that modulators of eIF2α

phosphorylation might have therapeutic potential in treatment
of several cellular stress-related pathologies such as Alzheimer’s
disease (22, 48), prion diseases (23), diabetes (49), Huntington’s
disease (50), and amyotrophic lateral sclerosis (51). It will be
important to consider the effect of eIF2α phosphorylation on
thermal nociception while developing clinically applicable com-
pounds to the latter maladies.
In summary, we uncovered a previously unknown role for the

cellular stress response pathway in nociception. This knowledge
can be used to develop strategies to treat conditions associated
with altered heat sensation, most notably burn pain, and should
be considered while introducing eIF2α modulators to clinical
practice.

Experimental Procedures
Behavioral Experiments, Electrophysiological Recordings, and Calcium Imaging.
See SI Experimental Procedures for details of the experimental procedures.
All procedures complied with Canadian Council on Animal Care guidelines
and were approved by McGill University’s Downtown Animal Care Committee.

Drugs. PKR inhibitor (PKRi) and Sal003 were purchased from Calbiochem and
dissolved in 30%polyethylene glycol in saline. Capsaicinwas purchased from Sigma
and dissolved in ethanol. TNF-α was purchased from Kamiya Biomedical.

Western Blotting and Immunohistochemistry. Proteins were resolved on SDS-
polyacrylamide gels using standard techniques. See SI Experimental Proce-
dures for details of the experimental procedures and antibodies used.

Statistical Analyses. All results are expressed as mean ± SEM. All statistical
comparisons were made with either the Student t test or a one-way ANOVA
followed by between-group comparisons using the Bonferroni post hoc test,
unless otherwise indicated, with P < 0.05 as the significance criterion. Power
analyses were not possible because we had no a priori expectation of effect
size but rather were informed by normative practices in the pain field (52).
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